lates. Mutations in rrl and rrs genes were not detected. AST for 4 MAM isolates confirmed that inducible resistance is not present even with erm(41) T28 mutation. AST for 3 MAA with erm(41) C28 polymorphism showed MIC values below 2 mg/L which is interpreted by CLSI guidelines as sensitive strain. AST showed that MIC values for amikacin are between 8–16 mg/L interpreted as sensitive and concordant with molecular analysis.

In Slovenia, for macrolide and aminoglycoside resistance, phenotypic and genotypic results of *Mycobacterium abscessus* complex are concordant. Prevalent subspecies is MAA where high percentage of strains have inducible macrolide resistance. No other unknown genetic mutations were present in our isolates that can cause inducible macrolide resistance. Which is important for treatment of CF, where clarithromycin is first drug of choice.

6.54 doi: 10.15789/2220-7619-2018-4-6.54

MOLECULAR FEATURES OF *Mycobacterium tuberculosis* ISOLATES FROM PATIENTS LIVING IN CLOSED CITY IN THE URAL REGION, RUSSIA

T.V. Umpeleva1, N.I. Eremenova1, K.V. Belousova1, D.V. Vakhrusheva1, A.A. Vyzavaya2

1National Medical Research Center of Tuberculosis and Infectious Diseases, Ekaterinburg, Russia; 2St. Petersburg Pasteur Institute, St. Petersburg, Russia

Novouralsk is a closed town in the Sverdlovsk region, Middle Ural area in Russia, with a total population of 81 500 and travel and residency restrictions. We aimed to identify the molecular-epidemiological features of *M. tuberculosis* circulating in Novouralsk under these specific conditions.

A total of 87 *M. tuberculosis* clinical isolates obtained between 2013 and 2016 from TB patients living in Novouralsk town were analyzed. According to clinical data, 34 (39.1%) of TB patients were HIV-infected. 53 (60.9%) of TB cases were newly diagnosed. Using real-time PCR we divided *M. tuberculosis* clinical isolates into Beijing/non-Beijing genetic groups. Beijing genotyping variant B0/W148 was detected by multiplex PCR assay. VNTR loci MIRU26 and QUB26 were used for subtyping Beijing strains. Spoligotyping was used for further subtyping non-Beijing isolates. Drug susceptibility testing for first and second line drugs was performed by absolute concentration method.

Genotyping identified the predominance of the Beijing genotype isolates (75.5%), among new TB cases, that is almost 20% higher than the average for the Ural region (p < 0.05). 52.8% isolates belonged to variant Beijing B0/W148. The majority of Beijing isolates — 35 (40.2%) had seven copies in MIRU26 and QUB26 loci. Nine (10.3%) Beijing B0/W148 isolates had 2 copies in QUB26 locus that was unusual for this genetic cluster; six patients from this group had TB/HIV co-infection. Seven (8.0%) of non-Beijing isolates belonged to SIT35 spoligotype (Ural family). 20.7% of patient had prison history and 72.2% of them were infected with B0/W148 genotype. The MDR prevalence rate was higher than in Sverdlovsk region (86% vs 43.9% , p < 0.05) and MDR status was associated with the Beijing B0/W148 genotype (94% and 6% of its isolates were MDR and polyresistant, respectively).

Epidemiological situation with TB in Novouralsk is characterized by high level of TB/HIV co-infection, predominance of Beijing B0/W148 isolates, which is an underlying reason of high level of MDR-TB.


PREVALENCE AND DIVERSITY OF NONTUBERCULOUS MYCOBACTERIA IN DIFFERENT REGIONS OF THE RUSSIAN FEDERATION

V. Ustinova1,2, T. Smirnova1, E. Larionova1, I. Andrievskaya1, E. Kiseleva1, S. Andreevskaya1, L. Chernousova1

1Central Tuberculosis Research Institute, Moscow, Russia; 2LLC Syntol, Moscow, Russia

Today, more attention is being paid worldwide to the nontuberculous mycobacteria (NTM) infections due to their increase in various regions of the world. The prevalence of different NTM species depends on the geographical location. The prevalence and distribution of the NTM species in Russian Federation have not been sufficiently studied to date.

The objective of this study was to demonstrate the diversity of NTM species isolated from patients in different regions of the Russian Federation. NTM were isolated from solid and liquid media from patients with suspected tuberculosis/mycobacteriosis in the period from July, 2013 to June, 2017 and identified using GenoType Mycobacterium CM/AS assay (Hain Lifescience, Germany) and real-time PCR assay co-developed with Syntol LLC (Moscow, Russia). Seventeen NTM species were identified in 1400 cultures from 876 patients. Exact species was identified for isolates from 64/876 (95.89%) patients. The prevalence of slowly growing NTM was 36.5% (643/1840). The most common species was *M. avium* (223/846, 26.5%). Also the high incidence rate (in descending order) has been shown for *M. gordonae* (115/846, 13.12%), *M. lentiflavum* (113/846, 12.9%), *M. intracellulare* (80, 9.13%), *M. fortuitum* (83/846, 9.47%), *M. kansasi* (62/846, 7.1%), *M. abscessus* (52/846, 5.9%) and *M. xenopi* (31/846, 3.5%). 16 of 17 identified species were detected in Moscow region. This may be due to a large number of cases analyzed in this region in comparison with other regions. It was shown that NTM species distribution in Central Federal District, European part of Privolzhsky Federal District and Kaliningrad (Northwest Russia) was similar to European countries: MAC 33–39%, *M. gordonae* — 10–20% and *M. fortuitum* — 5–13%. The species distribution of NTM for neighboring Syktyvkar and Pern (North of European Russia) was similar and was characterized by high rates of *M. fortuitum* infection and low rates of *M. avium* infection. NTM, isolated from the border city of Khanty-Mansiysk were also characterized by low occurrence of *M. avium* and prevalence of *M. gordonae*.

To conclude, during the study period, 1400 samples collected from 876 patients in 6 federal districts were analyzed. The greatest species diversity — 16 NTM species — was shown for Moscow region. In most of the regions analyzed, slow-growing NTMs prevailed and the most abundant were species belonging to MAC complex. However, even on a relatively small number of observations, some regional features can be observed.

6.56 doi: 10.15789/2220-7619-2018-4-6.56

MOLECULAR CHARACTERIZATION OF *Mycobacterium bovis* ISOLATES FROM CATTLE IN BULGARIA

V. Valcheva1, T. Savova-Lalkovska2, A. Dimitrova2, H. Najdenski1, M. Bonovska1

1The Stephan Angeloff Institute of Microbiology, BAS, Sofia, Bulgaria; 2National Diagnostic and Research Veterinary Medical Institute, Sofia, Bulgaria

The observation of the population dynamics, diversity of genotypes and dissemination of *Mycobacterium bovis* strains in Bulgaria and neighboring countries play