Preview

Инфекция и иммунитет

Расширенный поиск

Нейтрофильные гранулоциты: участие в гомеостатических и репаративных процессах. Часть II

https://doi.org/10.15789/2220-7619-NGP-1258

Полный текст:

Аннотация

После выхода из костного мозга (КМ) в кровообращение зрелые нейтрофильные гранулоциты в отсутствие воспаления претерпевают ряд фенотипических и физиологических изменений, в комплексе названных «старением», в процессе которого они конститутивно получают праймирующие сигналы от комменсальной микробиоты и приобретают бόльшую функциональную готовность в случае активации при травматизации тканей или инвазии патогенов. Физиологическое старение нейтрофилов в крови и последующее их возвращение в КМ генерирует сигналы, модулирующие размер и функции гемопоэтической ниши у мышей и, возможно, у человека. Циркадная физиологическая инфильтрация КМ нейтрофилами содействует поддержанию базового уровня внекостномозговых гемопоэтических клеток-предшественников, обладающих функциями регенерации и иммунного наблюдения. Помимо КМ, нейтрофилы активно проникают и в другие здоровые ткани в количестве и с динамикой, специфичной для каждой ткани, вероятно, оказывая действие на их базальную физиологию. На примере легочной ткани мышей показано, что нейтрофилы могут «управлять» работой ряда генов, регулирующих клеточный рост, миграцию, пролиферацию, дифференцировку клеток, а также канцерогенез. Внутрисосудистые нейтрофилы легких являются «стратегическим запасом», который может при необходимости высвобождаться в кровообращение, либо реагировать на повреждения, легочную или генерализованную инфекции. Нейтрофильные гранулоциты принимают участие в деструкции эндометриальных тканей во время фазы десквамации, в последующей их репарации и физиологическом ангиогенезе в пролиферативной фазе менструального цикла; участвуют в процессе разрыва стенки преовуляторного фолликула яичников и выхода ооцита; способствуют деградации и рассасыванию желтого тела в случае ненаступления беременности; играют важную физиологическую роль в ремоделировании сосудов беременной матки и формировании материнской иммунной толерантности по отношению к полуаллогенному плоду. При инфекции и/или повреждении слизистой оболочки кишечника активно мигрирующие на поверхность кишечного эпителия нейтрофилы усиливают пролиферацию эпителиоцитов; ставят на них «гипоксическую подпись», запуская транскрипцию когорты генов, кодирующих синтез муцинов, муцин-модифицирующих пептидов, антимикробных белков, β-дефензинов, что в конечном итоге стимулирует реституцию эпителия и восстановление его барьерной функции. Рекрутированные в ротовую полость нейтрофилы регулируют количественный и качественный состав микробных сообществ оральных биоплёнок человека, отвечают за обеспечение здоровья пародонтальных структур. На примере патогенеза пародонтита при дефиците адгезии лейкоцитов (LAD-1) показано, что развитие заболеваний пародонта при ряде врождённых нарушений количества и функций нейтрофильных гранулоцитов может быть связано не только с дефектом их защитно-эффекторной активности, но и с нарушением иммунорегуляторной функции тканевых нейтрофилов. Являясь основным участником и регулятором заживления кожных ран на ранней стадии, стадии воспаления, нейтрофилы не только уничтожают возможных патогенов, но также участвуют в очищении раны от клеточного дебриса и эритроцитов, генерируют цитокины, ферменты и ростовые факторы, влияющие на дальнейшие этапы процесса репарации. У пациентов с нейтропенией или с дефектами миграции и функционирования нейтрофилов, например, при хронической гранулематозной болезни, увеличивается риск инфицирования и ухудшается процесс регенерации. И апоптоз, и нетоз, являясь механизмами гибели нейтрофилов, вносят огромный вклад в процесс заживления ран. Однако дисрегуляция и нарушение баланса как апоптоза, так и нетоза могут приводить к негативным последствиям с формированием хронических длительно незаживающих ран.

Об авторах

И. И. Долгушин
ФГБОУ Южно-Уральский государственный медицинский университет Минздрава России
Россия

Доктор медицинских наук, профессор, Президент ФГБОУ ВО ЮУГМУ Минздрава России, заведующий кафедрой микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики ФГБОУ ВО ЮУГМУ МР.

Челябинск



Е. А. Мезенцева
ФГБОУ Южно-Уральский государственный медицинский университет Минздрава России
Россия

Мезенцева Елена Анатольевна - Кандидат медицинских наук, доцент кафедры микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики ФГБОУ ВО ЮУГМУ Минздрава России, SPIN-код автора:3063-5739.

454092, Челябинск, ул. Воровского, 64, Тел.: 8 902 892-28-43



Список литературы

1. Алиева М.С., Расулов И.М., Магомедов М.А., Мейланова Р.Д. Современные аспекты этиологии и патогенеза пародонтита // Известия Дагестанского государственного университета. Естественные и точные науки. 2013. № 1 (22). С. 25—29.

2. Вольф Г.Ф., Хэссел Т.М. Пародонтология. Гигиенические аспекты. Пер. с англ.; под ред. Г.И. Ронь. М.: Медпресс-информ, 2014. 360 с.

3. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН, 2009. 208 с.

4. Долгушин И.И., Бухарин О.В. Нейтрофилы и гомеостаз. Екатеринбург: УрО РАН, 2001. 288 с.

5. Долгушин И.И., Мезенцева Е.А. Нейтрофильные гранулоциты: участие в гомеостатических и репаративных процессах. Часть I // Инфекция и иммунитет. 2020. Т. 10, № 4. С. 609—624.

6. Лебедева О.П., Рудых Н.А., Полякова И.С., Пахомов С.П., Чурносов М.И., Самборская Н.И. Антимикробные пептиды первая линия антиинфекционной защиты женских половых путей // Научные ведомости Белгородского Государственного Университета. Серия: Медицина. Фармация. 2010. № 22 (93), вып. 12. С. 25—30.

7. Степанова Т.Ю., Тимофеева А.В. Микробиом ротовой полости человека // Современные проблемы науки и образования. 2016. № 5. URL: http://www.science-education.ru/ru/article/view?id=25212 (In Russ.)]

8. Хабибуллина А.Р., Тимофеева А.В. Микробиом дентальной бляшки человека // Современные проблемы науки и образования. 2017. № 3. URL: http://www.science-education.ru/ru/article/view?id=26539

9. Aas J.A. Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005, vol. 43, no. 11,pp. 5721-5732. doi: 10.1128/JCM.43.11.5721-5732.2005

10. Akiyama I., Yoshino O., Osuga Y., Shi J., Takamura M., Harada M., Koga K., Hirota Y., Hirata T., Fujii T., Saito S., Kozuma S. The role of bone morphogenetic protein 6 in accumulation and regulation of neutrophils in the human ovary. Reprod. Sci., 2014, vol. 21, iss. 6, pp. 772-777. doi: 10.1177/1933719113518988

11. Amin M., Ho A.C., Lin J.Y., Batista da Silva A.P., Glogauer M., Ellen R.P. Induction of de novo subcortical actin filament assembly by Treponema denticola major outer sheath protein. Infect. Immun., 2004, vol. 72, no. 6, pp. 3650-3654. doi: 10.1128/IAI.72.6.3650-3654.2004

12. Amsalem H., Kwan M., Hazan A., Zhang J., Jones R.L., Whittle W., Kingdom J.C., Croy B.A., Lye S.J., Dunk C.E. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J. Immunol., 2014, vol. 193, iss. 6, pp. 3070-3079. doi: 10.4049/jimmunol.1303117

13. Arck P.C., Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med., 2013, vol. 19, iss. 5, pp. 548-556. doi: 10.1038/nm.3160

14. Armstrong G.M., Maybin J.A., Murray A.A., Nicol M., Walker C., Saunders P.T.K., Rossi A.G., Critchley H.O.D. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci. Rep., 2017, vol. 7: 17416. doi: 10.1038/s41598-017-17565-x

15. Berezow A.B., Darveau R.P. Microbial shift and periodontitis. Periodontology 2000, 2011, vol. 55, iss. 1, pp. 36-47. doi: 10.1111/j.1600-0757.2010.00350.x

16. Bollapragada S., Youssef R., Jordan F., Greer I., Norman J., Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am. J. Obstet. Gynecol., 2009, vol. 200, iss. 1, pp. 104.e1-104.e11. doi: 10.1016/j.ajog.2008.08.032

17. Brannstrom M., Enskog A. Leukocyte networks and ovulation. J. Reprod. Immunol., 2002, vol. 57, iss. 1-2, pp. 47-60. doi: 10.1016/S0165-0378(02)00009-8

18. Brissette C.A., Pham T.T., Coats S.R., Darveau R.P., Lukehart S.A. Treponema denticola does not induce production of common innate immune mediators from primary gingival epithelial cells. Oral Microbiol. Immunol., 2008, vol. 23, iss. 6, pp. 474-481. doi: 10.1111/j.1399-302X.2008.00452.x

19. Brown L.F., Detmar M., Claffey K., Nagy J.A., Feng D., Dvorak A.M., Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS, 1997, vol. 79, pp. 233-269. doi: 10.1007/978-3-0348-9006-9_10

20. Bukulmez O., Arici A. Leukocytes in ovarian functio. Hum. Reprod. Update, 2000, vol. 6, iss. 1, 15 p. doi: 10.1093/humupd/6.1.1

21. Campbell E.L., Bruyninckx W.J., Kelly C.J., Glover L.E., McNamee E.N., Bowers B.E., Bayless A.J., Scully M., Saeedi B.J., Golden-Mason L., Ehrentraut S.F., Curtis V.F., Burgess A., Garvey J.F., Sorensen A., Nemenoff R., Jedlicka P., Taylor C.T., Kominsky D.J., Colgan S.P. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity, 2014, vol. 40, iss. 1, pp. 66-77. doi: 10.1016/j.immuni.2013.11.020

22. Cortes-Vieyra R., Rosales C., Uribe-Querol E. Neutrophil functions in periodontal homeostasis. J. Immunol. Res., 2016, vol. 2016, 9 p. doi: 10.1155/2016/1396106

23. Curtis M.A., Zenobia C., Darveau R.P. The relationship of the oral microbiota to periodontal health and disease. Cell. Host Microbe, 2011, vol. 10, iss. 4, pp. 302-306. doi: 10.1016/j.chom.2011.09.008

24. Dababneh R., Al-Wahadneh A.M., Hamadneh S., Khouri A., Bissada N.F. Periodontal manifestation of leukocyte adhesion deficiency type I. J. Periodontol., 2008, vol. 79, iss. 4, pp. 764-768. doi: 10.1902/jop.2008.070323

25. Darveau R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol., 2010, vol. 8, iss. 7, pp. 481-490. doi: 10.1038/nrmicro2337

26. Darveau R.P., Belton C.M., Reife R.A., Lamont R.J. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun., 1998, vol. 66, no. 4, pp. 1660-1665.

27. Dashper S.G., Seers C.A., Tan K.H., Reynolds E.C. Virulence factors of the oral spirochete Treponema denticola. J. Dental Res., 2011, vol. 90, iss. 6, pp. 691-703. doi: 10.1177%2F0022034510385242

28. Deas D.E., Mackey S.A., McDonnell H.T. Systemic disease and periodontitis: manifestations of neutrophil dysfunction. Periodontology 2000, 2003, vol. 32, iss. 1, pp. 82-104. doi: 10.1046/j.0906-6713.2003.03207.x

29. Delima A.J., Van Dyke T.E. Origin and function of the cellular components in gingival crevice fluid. Periodontology 2000, 2003, vol. 31, iss. 1, pp. 55-76. doi: 10.1034/j.1600-0757.2003.03105.x

30. Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C., Yu W.H., Lakshmanan A., Wade W.G. The human oral microbiome. J. Bacteriol., 2010, vol. 192, no. 19, pp. 5002-5017. doi: 10.1128/JB.00542-10

31. Dixon D.R., Bainbridge B.W., Darveau R.P. Modulation of the innate immune response within the periodontium. Periodontology 2000, 2004, vol. 35, iss. 1, pp. 53-74. doi: 10.1111/j.0906-6713.2004.003556.x

32. Dunbar B., Patel M., Fahey J., Wira C. Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol. Cell. Endocrinol., 2012, vol. 354, iss. 1-2, pp. 85-93. doi: 10.1016/j.mce.2012.01.002

33. Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvas-cular hyperpermeability, and angiogenesis. Am. J. Pathol., 1995, vol. 146, no. 5, pp. 1029-1039.

34. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrine Rev., 1997, vol. 18, iss. 1, pp. 4-25. doi: 10.1210/edrv.18.1.0287

35. Fine N., Hassanpour S., Borenstein A., Sima C., Oveisi M., Scholey J., Cherney D., Glogauer M. Distinct oral neutrophil subsets define health and periodontal disease states. J. Dental Res., 2016, vol. 95, iss. 8, pp. 931-938. doi: 10.1177/0022034516645564

36. Fischbach M.A., Sonnenburg J.L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe, 2011, vol. 10, iss. 4, pp. 336-347. doi: 10.1016/j.chom.2011.10.002

37. Flannigan K.L., Ngo V.L., Geem D., Harusato A., Hirota S.A., Parkos C.A., Lukacs N.W., Nusrat A., Gaboriau-Routhiau V., Cerf-Bensussan N., Gewirtz A.T., Denning T.L. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol., 2017, vol. 10, iss. 3, pp. 673-684. doi: 10.1038/mi.2016.80

38. Fournier B.M., Parkos C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol., 2012, vol. 5, pp. 354-366. doi: 10.1038/mi.2012.24

39. Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, vol. 16, iss. 3, pp. 183-194. doi: 10.1016%2Fj.ccr.2009.06.017

40. Fujioka M., Sasa R., Inoue M., Nakamura M. Immunological characterization of junctional epithelium: an immunohistochemical study. Dental Med. Res., 2009, vol. 29, iss. 3, pp. 253-258. doi: 10.7881/dentalmedres.29.253

41. Gargett C.E., Lederman F., Heryanto B., Gambino L.S., Rogers P.A. Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum. Reprod., 2001, vol. 16, iss. 6, pp. 1065-1075. doi: 10.1093/humrep/16.6.1065

42. Gasparoto T.H., Vieira N.A., Porto V.C., Campanelli A.P., Lara V.S. Differences between salivary and blood neutrophils from elderly and young denture wearers. J. Oral. Rehabil., 2011, vol. 38, iss. 1, pp. 41-51. doi: 10.1111/j.1365-2842.2010.02126.x

43. Giaglis S., Stoikou M., Grimolizzi F., Subramanian B.Y., van Breda S.V., Hoesli I., Lapaire O., Hasler P., Than N.G., Hahn S. Neutrophil migration into the placenta: good, bad or deadly? Cell Adh. Migr., 2016, vol. 10, iss. 1-2, pp. 208-225. doi: 10.1080/19336918.2016.1148866

44. Giaglis S., Stoikou M., Sur Chowdhury C., Schaefer G., Grimolizzi F., Rossi S.W., Hoesli I.M., Lapaire O., Hasler P., Hahn S. Multimodal regulation of NET formation in pregnancy: Progesterone antagonizes the Pro-NETotic effect of estrogen and G-CSF. Front. Immunol., 2016, vol. 7: 565. doi: 10.3389/fimmu.2016.00565

45. Gomez-Lopez N., StLouis D., Lehr M.A., Sanchez-Rodriguez E.N., Arenas-Hernandez M. Immune cells in term and preterm labor. Cell. Mol. Immunol., 2014, vol. 11, iss. 6, pp. 571-581. doi: 10.1038/cmi.2014.46

46. Gonzalez J.M., Xu H., Chai J., Ofori E., Elovitz M.A. Preterm and term cervical ripening in CD1 mice (Mus musculus): similar or divergent molecular mechanisms? Biol. Reprod., 2009, vol. 81, iss. 6, pp. 1226-1232. doi: 10.1095/biolreprod.108.075309

47. Greer A., Irie K., Hashim A., Leroux B.G., Chang A.M., Curtis M.A., Darveau R.P. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J. Dental Res., 2016, vol. 95, iss. 8, pp. 946-952. doi: 10.1177%2F0022034516641036

48. Groeger S., Meyle J. Oral Mucosal Epithelial Cells. Front. Immunol., 2019, vol. 10: 208. doi: 10.3389/fimmu.2019.00208

49. Hahn S., Giaglis S., Hoesli I., Hasler P. Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss. Front. Immunol., 2012, vol. 3: 362. doi: 10.3389/fimmu.2012.00362

50. Hahn S., Hasler P., Vokalova L., van Breda S.V., Lapaire O., Than G.N., Hoesli I., Rossi S.W. The role of neutrophil activation in determining the outcome of pregnancy and modulation by hormones and/or cytokines. Clin. Exp. Immunol., 2019. doi: 10.1111/cei.13278

51. Hajishengallis E., Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dental Res., 2014, vol. 93, iss. 3, pp. 231-237. doi: 10.1177/0022034513507956

52. Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol., 2012, vol. 10, pp. 717-725. doi: 10.1038/nrmicro2873

53. Hajishengallis G., Chavakis T., Hajishengallis E., Lambris J.D. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J. Leukoc. Biol., 2015, vol. 98, iss. 4, pp. 539-548. doi: 10.1189/jlb.3VMR1014-468R

54. Hall C.H.T., Campbell E.L., Colgan S.P. Neutrophils as components of mucosal homeostasis. Cell. Mol. Gastroenterol. Hepatol., 2017, vol. 4, iss. 3, pp. 329-337. doi: 10.1016/j.jcmgh.2017.07.001

55. Horne A.W., Stock S.J., King A.E. Innate immunity and disorders of the female reproductive tract. Reproduction, 2008, vol. 135, iss. 6, pp. 739-749. doi: 10.1530/REP-07-0564

56. Ji S., Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J. Periodontal. Implant. Sci., 2013, vol. 43, iss. 1, pp. 3-11. doi: 10.5051/jpis.2013.43.1.3

57. Jiemtaweeboon S., Shirasuna K., Nitta A., Kobayashi A., Schuberth H., Shimizu T., Miyamoto A. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod. Biol. Endocrinol., 2011, vol. 9: 79. doi: 10.1186/1477-7827-9-79

58. Junqueira L.C., Zugaib M., Montes G.S., Toledo O.M., Krisztan R.M., Shigihara K.M. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am. J. Obstet. Gynecol., 1980, vol. 138, iss. 3, pp. 273-281. doi: 10.1016/0002-9378(80)90248-3

59. Kaitu’u T.J., Shen J., Zhang J., Morison N.B., Salamonsen L.A. Matrix metalloproteinases in endometrial breakdown and repair: functional significance in a mouse model. Biol. Reprod., 2005, vol. 73, iss. 4, pp. 672-680. doi: 10.1095/biolreprod.105.042473

60. Kaitu’u-Lino T.J., Morison N.B., Salamonsen L.A. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res., 2007, vol. 328, iss. 1, pp. 197-206. doi: 10.1007/s00441-006-0358-2

61. Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., Weir T.L., Ehrentraut S.F., Pickel C., Kuhn K.A., Lanis J.M., Nguyen V., Taylor C.T., Colgan S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, vol. 17, iss. 5, pp. 662-671. doi: 10.1016/j.chom.2015.03.005

62. Khajan M. Role of neutrophils in disease pathogenesis. InTechOpen, 2017. 178 p. doi: 10.5772/65581

63. Kinane D.F., Hart T.C. Genes and gene polymorphisms associated with periodontal disease. Crit. Rev. Oral Biol. Med., 2003, vol. 14, iss. 6, pp. 430-449. doi: 10.1177%2F154411130301400605

64. King A.E., Critchley H.O., Sallenave J.M., Kelly R.W. Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. J. Clin. Endocrinol. Metab., 2003, vol. 88, iss. 9, pp. 4426-4431. doi: 10.1210/jc.2003-030239

65. Koch S., Capaldo C.T., Hilgarth R.S., Fournier B., Parkos C.A., Nusrat A. Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol., 2013, vol. 6, pp. 136-145. doi: 10.1038/mi.2012.57

66. Kropf P., Baud D., Marshall S.E., Munder M., Mosley A., Fuentes J.M., Bangham C.R., Taylor G.P., Herath S., Choi B.S., Soler G., Teoh T., Modolell M., Muller I. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol., 2007, vol. 37, iss. 4, pp. 935-945. doi: 10.1002/eji.200636542

67. Landzberg M., Doering H., Aboodi G.M., Tenenbaum H.C., Glogauer M. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease. J. Periodontal. Res., 2015, vol. 50, iss. 3, pp. 330-336. doi: 10.1111/jre.12211

68. Lasarte S., Samaniego R., Salinas-Munoz L., Guia-Gonzalez M.A., Weiss L.A., Mercader E., Ceballos-Garcia E., Navarro-Gonzalez T., Moreno-Ochoa L., Perez-Millan F., Pion M., Sanchez-Mateos P., Hidalgo A., Munoz-Fernandez M.A., Relloso M. Sex hormones coordinate neutrophil immunity in the vagina by controlling chemokine gradients. J. Infect. Dis., 2016, vol. 213, iss. 3, pp. 476—484. doi: 10.1093/infdis/jiv402

69. Lathbury L.J., Salamonsen L.A. In vitro studies of the potential role of neutrophils in the process of menstruation. Mol. Hum. Reprod., 2000, vol. 6, iss. 10, pp. 899—906. doi: 10.1093/molehr/6.10.899

70. Lee S.K., Kim C.J., Kim D.J., Kang J.H. Immune cells in the female reproductive tract. Immune Network, 2015, vol. 15, iss. 1, pp. 16-26. doi: 10.4110/in.2015.15.1.16

71. Leiding J.W. Neutrophil evolution and their diseases in humans. Front. Immunol., 2017, vol. 8: 1009. doi: 10.3389/fimmu.2017.01009

72. Li S., Herrera G.G., Tam K.K., Lizarraga J.S., Beedle M.T., Winuthayanon W. Estrogen action in the epithelial cells of the mouse vagina regulates neutrophil infiltration and vaginal tissue integrity. Sci. Rep., 2018, vol. 8: 11247. doi: 10.1038/s41598-018-29423-5

73. Louis N.A., Hamilton K.E., Kong T., Colgan S.P. HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J., 2005, vol. 19, no. 8, pp. 950-959. doi: 10.1096/fj.04-3251com

74. Luissint A.C., Parkos C.A., Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology, 2016, vol. 151, iss. 4, pp. 616-632. doi: 10.1053/j.gastro.2016.07.008

75. Magalhaes M.A., Sun C.X., Glogauer M., Ellen R.P. The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cell. Microbiol., 2008, vol. 10, iss. 2, pp. 344-354. doi: 10.1111/j.1462-5822.2007.01045.x

76. Mager D.L., Ximenez-Fyvie L.A., Haffajee A.D., Socransky S.S. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol., 2003, vol. 30, iss. 7, pp. 644-654. doi: 10.1034/j.1600-051X.2003.00376.x

77. Manresa M.C., Taylor C.T. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell. Mol. Gastroenterol. Hepatol., 2017, vol. 3, iss. 3, pp. 303-315. doi: 10.1016/j.jcmgh.2017.02.004

78. Marder W., Knight J.S., Kaplan M.J., Somers E.C., Zhang X., O’Dell A.A., Padmanabhan V., Lieberman R.W. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci. Med., 2016, vol. 3, iss. 1: e000134. doi: 10.1136/lupus-2015-000134

79. Matthews J.D., Weight C.M., Parkos C.A. Leukocyte-epithelial interactions and mucosal homeostasis. Toxicol Pathol., 2014, vol. 42, iss. 1, pp. 91-98. doi: 10.1177%2F0192623313511336

80. Menning A., Walter A., Rudolph M., Gashaw I., Fritzemeier K.H., Roese L. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model. PLoS One, 2012, vol. 7, iss. 8: e41800. doi: 10.1371/journal.pone.0041800

81. Mittal P., Romero R., Tarca A.L., Gonzalez J., Draghici S., Xu Y., Dong Z., Nhan-Chang C.L., Chaiworapongsa T., Lye S., Kusanovic J.P., Lipovich L., Mazaki-Tovi S., Hassan S.S., Mesiano S., Kim C.J. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J. Perinat. Med., 2010, vol. 38, iss. 6, pp. 617-643. doi: 10.1515/jpm.2010.097

82. Mohanty T., Sjogren J., Kahn F., Abu-Humaidan A.H., Fisker N., Assing K., Morgelin M., Bengtsson A.A., Borregaard N., S0rensen O.E. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood, 2015, vol. 126, iss. 18, pp. 2128-2137. doi: 10.1182/blood-2015-04-641142

83. Moutsopoulos N.M., Konkel J.E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol., 2018, vol. 39, iss. 4, pp. 276-287. doi: 10.1016/j.it.2017.08.005

84. Moutsopoulos N.M., Lionakis M.S., Hajishengallis G. Inborn errors in immunity: unique natural models to dissect oral immunity. J. Dental Res., 2015, vol. 94, iss. 6, pp. 753-758. doi: 10.1177%2F0022034515583533

85. Moutsopoulos N.M., Konkel J., Sarmadi M., Eskan M.A., Wild T., Dutzan N., Abusleme L., Zenobia C., Hosur K.B., Abe T., Uzel G., Chen W., Chavakis T., Holland S.M., Hajishengallis G. Defective neutrophil recruitment in leukocyte adhesion deficiency Type I disease causes local IL-17-driven Inflammatory bone loss. Sci. Transl. Med., 2014, vol. 6, iss. 229, pp. 229ra40. doi: 10.1126/scitranslmed.3007696

86. Nakamura M. Histological and immunological characteristics of the junctional epithelium. Jpn. Dent. Sci. Rev., 2018, vol. 54, iss. 2, pp. 59-65. doi: 10.1016/j.jdsr.2017.11.004

87. Nicolas-Avila J.A., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. doi: 10.1016/j.immuni.2016.12.012

88. Nicu E.A., Rijkschroeff P., Wartewig E., Nazmi K., Loos B.G. Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case-control study. BMC Oral Health, 2018, vol. 18: 149. doi: 10.1186/s12903-018-0615-2

89. Nussbaum G., Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J. Clin. Periodontol., 2011, vol. 38, iss. s11, Special Issue: Proceedings of the 7th European Workshop on Periodontology, pp. 49-59. doi: 10.1111/j.1600-051X.2010.01678.x

90. Ochiel D.O., Fahey J.V., Ghosh M., Haddad S.N., Wira C.R. Innate immunity in the female reproductive tract: role of sex hormones in regulating uterine epithelial cell protection against pathogens. Curr. Womens Health Rev., 2008, vol. 4, iss. 2, pp. 102117. doi: 10.2174/157340408784246395

91. Olsen I., Hajishengallis G. Major neutrophil functions subverted by Porphyromonas gingivalis. J. Oral. Microbiol., 2016, vol. 8: 30936. doi: 10.3402/jom.v8.30936

92. Osmers R., Rath W., Adelmann-Grill B.C., Fittkow C., Kuloczik M., Szeverenyi M., Tschesche H., Kuhn W. Origin of cervical collagenase during parturition. Am. J. Obstet. Gynecol., 1992, vol. 166, iss. 5, pp. 1455-1460. doi: 10.1016/0002-9378(92)91619-L

93. Parkos C.A. Neutrophil-epithelial interactions: a double-edged sword. Am. J. Pathol., 2016, vol. 186, iss. 6, pp. 1404-1416. doi: 10.1016/j.ajpath.2016.02.001

94. Paster B.J., Olsen I., Aas J.A., Dewhirst F.E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology, 2006, vol. 42, iss. 1, pp. 80-87. doi: 10.1111/j.1600-0757.2006.00174.x

95. Puthengady Thomas B., Sun C.X., Bajenova E., Ellen R.P., Glogauer M. Modulation of human neutrophil functions in vitro by Treponema denticola major outer sheath protein. Infect. Immun., 2006, vol. 74, no. 3, pp. 1954-1957. doi: 10.1128/IAI.74.3.1954-1957.2006

96. Reis Machado J., da Silva M.V., Cavellani C.L., dos Reis M.A., Monteiro M.L., Teixeira Vde P., Miranda Correa R.R. Mucosal immunity in the female genital tract, HIV/AIDS. BioMed Res. Int., 2014, vol. 2014, 20 p. doi: 10.1155/2014/350195

97. Rijkschroeff P., Loos B.G., Nicu E.A. Impaired polymorphonuclear neutrophils in the oral cavity of edentulous individuals. Eur. J. Oral Sci., 2017, vol. 125, iss. 5, pp. 371-378. doi: 10.1111/eos.12367

98. Rijkschroeff P., Loos B.G., Nicu E.A. Oral polymorphonuclear neutrophil contributes to oral health. Curr. Oral Health Rep., 2018, vol. 5, pp. 211-220. doi: 10.1007/s40496-018-0199-6

99. Rijkschroeff P., Jansen I.D., van der Weijden F.A., Keijser B.J., Loos B.G., Nicu E.A. Oral polymorphonuclear neutrophil characteristics in relation to oral health: a cross-sectional, observational clinical study. Int. J. Oral Sci., 2016, vol. 8, iss. 3, pp. 191-198. doi: 10.1038/ijos.2016.23

100. Ryder M.I. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontology 2000, 2010, vol. 53, iss. 1, pp. 124-137. doi: 10.1111/j.1600-0757.2009.00327.x

101. Sakamoto Y., Moran P., Bulmer J.N., Searle R.F., Robson S.C. Macrophages and not granulocytes are involved in cervical ripening. J. Reprod. Immunol., 2005, vol. 66, iss. 2, pp. 161-173. doi: 10.1016/j.jri.2005.04.005

102. Sakamoto Y., Moran P., Searle R.F., Bulmer J.N., Robson S.C. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin. Exp. Immunol., 2004, vol. 138, iss. 1, pp. 151-157. doi: 10.1111/j.1365-2249.2004.02584.x

103. Salamonsen L.A., Woolley D.E. Menstruation: induction by matrix metalloproteinases and inflammatory cells. J. Reprod. Immunol., 1999, vol. 44, iss. 1-2, 27 p. doi: 10.1016/S0165-0378(99)00002-9

104. Salinas-Munoz L., Campos-Fernandez R., Mercader E., Olivera-Valle I., Fernandez-Pacheco C., Matilla L., Garcia-Bordas J., Brazil J.C., Parkos C.A., Asensio F., Munoz-Fernandez M.A., Hidalgo A., Sanchez-Mateos P., Samaniego R., Relloso M. Estrogen receptor-alpha (ESR1) governs the lower female reproductive tract vulnerability to Candida albicans. Front. Immunol., 2018, vol. 9: 1033. doi: 10.3389/fimmu.2018.01033

105. Schmidt S., Moser M., Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol. Immunol., 2012, vol. 55, iss. 1, pp. 49-58. doi: 10.1016/j.molimm.2012.11.006

106. Sela M.N. Role of Treponema denticola in periodontal diseases. Crit. Rev. Oral Biol. Med., 2001, vol. 12, iss. 5, pp. 399-413. doi: 10.1177/10454411010120050301

107. Shaul M.E., Fridlender Z.G. Cancer related circulating and tumor-associated neutrophils — subtypes, sources and function. FEBS J., 2018, vol. 285, iss. 23, pp. 4316-4342. doi: 10.1111/febs.14524

108. Shirasuna K., Jiemtaweeboon S., Raddatz S., Nitta A., Schuberth H.J., Bollwein H., Shimizu T., Miyamoto A. Rapid accumulation of polymorphonuclear neutrophils in the Corpus luteum during prostaglandin F(2a)-induced luteolysis in the cow. PLoS One, 2012, vol. 7, iss. 1: e29054. doi: 10.1371/journal.pone.0029054

109. Shynlova O., Nedd-Roderique T., Li Y., Dorogin A., Nguyen T., Lye S.J. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J. Cell. Mol. Med., 2013, vol. 17, iss. 2, pp. 311-324. doi: 10.1111/jcmm.12012

110. Singh N., Herbert B., Sooranna G.R., Orsi N.M., Edey L., Dasgupta T., Sooranna S.R., Yellon S.M., Johnson M.R. Is myometrial inflammation a cause or a consequence of term human labour? J. Endocrinol., 2017, vol. 235, iss. 1, pp. 69-83. doi: 10.1530/JOE-17-0318

111. Ssemaganda A., Kindinger L., Bergin P., Nielsen L., Mpendo J., Ssetaala A., Kiwanuka N., Munder M., Teoh T.G., Kropf P., Muller I. Characterization ofneutrophil subsets in healthy human pregnancies. PLoS One, 2014, vol. 9, iss. 2: e85696. doi: 10.1371/journal.pone.0085696

112. Stanley R.L., Ohashi T., Gordon J., Mowa C.N. A proteomic profile of postpartum cervical repair in mice. J. Mol. Endocrinol., 2018, vol. 60, iss. 1, pp. 17-28. doi: 10.1530/JME-17-0179

113. Stark M.A., Huo Y., Burcin T.L., Morris M.A., Olson T.S., Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, vol. 22, iss. 3, pp. 285-294. doi: 10.1016/j.immuni.2005.01.011

114. Stocco C., Telleria C., Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr. Rev., 2007, vol. 28, iss. 1, pp. 117-149. doi: 10.1210/er.2006-0022

115. Sugino N., Okuda K. Species-related differences in the mechanism of apoptosis during structural luteolysis. J. Reprod. Dev., 2007, vol. 53, iss. 5, pp. 977-986. doi: 10.1262/jrd.19047

116. Sumagin R., Brazil J.C., Nava P., Nishio H., Alam A., Luissint A.C., Weber D.A., Neish A.S., Nusrat A., Parkos C.A. Neutrophil interactions with epithelial expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol., 2016, vol. 9, iss. 5, pp. 1151-1162. doi: 10.1038/mi.2015.135

117. Sumagin R., Parkos C.A. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepi-thelial migration. Tissue Barriers, 2015, vol. 3, iss. 1-2: e969100. doi: 10.4161/21688362.2014.969100

118. Sumagin R., Robin A.Z., Nusrat A., Parkos C.A. Transmigrated neutrophils in the intestinal lumen engage ICAM 1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol., 2014, vol. 7, iss. 4, pp. 905-915. doi: 10.1038/mi.2013.106

119. Talbott H., Delaney A., Zhang P., Yu Y., Cushman R.A., Cupp A.S., Hou X., Davis J.D. Effects of IL8 and immune cells on the regulation of luteal progesterone secretion. Reproduction, 2014, vol. 148, iss. 1, pp. 21-31. doi: 10.1530/REP-13-0602

120. Tawara F., Tamura N., Suganuma N., Kanayama N. Changes in cervical neutrophil elastase levels during the menstrual cycle. Reprod. Med. Biol., 2012, vol. 11, iss. 1, pp. 65-68. doi: 10.1007/s12522-011-0104-7

121. Thomson A.J., Telfer J.F., Young A., Campbell S., Stewart C.J., Cameron I.T., Greer I.A., Norman J.E. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Human Reprod., 1999, vol. 14, iss. 1, pp. 229-236. doi: 10.1093/humrep/15.1.229

122. Timmons B., Akins M., Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol. Metab., 2010, vol. 21, iss. 6, pp. 353-361. doi: 10.1016/j.tem.2010.01.011

123. Timmons B.C., Fairhurst A.M., Mahendroo M.S. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J. Immunol., 2009, vol. 182, iss. 5, pp. 2700-2707. doi: 10.4049/jimmunol.0803138

124. Timmons B.C., Mahendroo M.S. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol. Reprod., 2006, vol. 74, iss. 2, pp. 236-245. doi: 10.1095/biolreprod.105.044891

125. Tinsley J.H., Wu M.H., Ma W.Y., Taulman A.C., Yuan S.Y. Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J. Biol. Chem., 1999, vol. 274, no. 35, pp. 24930—24934. doi: 10.1074/jbc.274.35.24930

126. Tsukamoto Y., Usui M., Yamamoto G., Takagi Y., Tachikawa T., Yamamoto M., Nakamura M. Role of the junctional epithelium in periodontal innate defense and homeostasis. J. Periodontal. Res., 2012, vol. 47, iss. 6, pp. 750—757. doi: 10.1111/j.1600-0765.2012.01490.x

127. Uriarte S.M., Edmisson J.S., Jimenez-Flores E. Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence. Immunol. Rev., 2016, vol. 273, iss. 1, special iss.: Neutrophils, pp. 282—298. doi: 10.1111/imr.12451

128. Vincent A.J., Malakooti N., Zhang J., Rogers P.A.W., Affandi B., Salamonsen L.A. Endometrial breakdown in women using Norplant is associated with migratory cells expressing matrix metalloproteinase-9 (gelatinase B). Hum. Reprod., 1999, vol. 14, iss. 3, pp. 807-815. doi: 10.1093/humrep/14.3.807

129. Wade W.G. The oral microbiome in health and disease. Pharmacol. Res., 2013, vol. 69, iss. 1, pp. 137-143. doi: 10.1016/j.phrs.2012.11.006

130. Webb C.R., Koboziev I., Furr K.L., Grisham M.B. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology, 2016, vol. 23, iss. 2, pp. 67-80. doi: 10.1016/j.pathophys.2016.02.002

131. Winkler M., Fischer D.C., Ruck P., Marx T., Kaiserling E., Oberpichler A., Tschesche H., Rath W. Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum. Reprod., 1999, vol. 14, iss. 4, pp. 1096-1000. doi: 10.1093/humrep/14.4.1096

132. Winter S.E., Winter M.G., Xavier M.N., Thiennimitr P., Poon V., Keestra A.M., Laughlin R.C., Gomez G., Wu J., Lawhon S.D., Popova I.E., Parikh S.J., Adams L.G., Tsolis R.M., Stewart V.J., Baumler A.J. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 2013, vol. 339, iss. 6120, pp. 708-711. doi: 10.1126/science.1232467

133. Wira C.R., Fahey J.V., Sentman C.L., Pioli P.A., Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev., 2005, vol. 206, iss. 1, pp. 306-335. doi: 10.1111/j.0105-2896.2005.00287.x

134. Wira C.R., Rodriguez-Garcia M., Patel M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol., 2015, vol. 15, iss. 4, pp. 217-230. doi: 10.1038/nri3819

135. Yamazaki T., Miyamoto M., Yamada S., Okuda K., Ishihara K. Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes. Microbes Infect., 2006, vol. 8, iss. 7, pp. 1758-1763. doi: 10.1016/j.micinf.2006.02.013

136. Yeaman G.R., Collins J.E., Currie J.K., Guyre P.M., Wira C.R., Fanger M.W. IFN-y is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J. Immunol., vol. 160, iss. 10, pp. 5145-5153.

137. Yellon S.M. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol. Reprod., 2017, vol. 96, iss. 1, pp. 13-23. doi: 10.1095/biolreprod.116.142844

138. Yoon M.Y., Yoon S.S. Disruption of the gut ecosystem by antibiotics. Yonsei Med. J., 2018, vol. 59, iss. 1, pp. 4-12. doi: 10.3349/ymj.2018.59.1.4

139. Zaura E., Keijser B.J.F., Huse S.M., Crialaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol., 2009, vol. 9: 259. doi: 10.1186/1471-2180-9-259

140. Zenobia C., Luo X.L., Hashim A., Abe T., Jin L., Chang Y., Jin Z.C., Sun J.X., Hajishengallis G., Curtis M.A., Darveau R.P. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell. Microbiol., 2013, vol. 15, iss. 8, pp. 1419-1426. doi: 10.1111/cmi.12127

141. Zhao H., Kalish F., Wong R.J., Stevenson D.K. Infiltration of myeloid cells in the pregnant uterus is affected by heme oxyge-nase-1. J. Leukoc. Biol., 2017, vol. 101, iss. 1, pp. 217-226. doi: 10.1189/jlb.1A0116-020RR

142. Zindl C.L., Lai J.F., Lee Y.K., Maynard C.L., Harbour S.N., Ouyang W., Chaplin D.D., Weaver C.T. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, iss. 31, pp. 12768-12773. doi: 10.1073/pnas.1300318110


Дополнительные файлы

Для цитирования:


Долгушин И.И., Мезенцева Е.А. Нейтрофильные гранулоциты: участие в гомеостатических и репаративных процессах. Часть II. Инфекция и иммунитет. 2021;11(1):25-41. https://doi.org/10.15789/2220-7619-NGP-1258

For citation:


Dolgushin I.I., Mezentseva E.A. Neutrophil granulocytes: participation in homeostatic and reparative processes. Part II. Russian Journal of Infection and Immunity. 2021;11(1):25-41. (In Russ.) https://doi.org/10.15789/2220-7619-NGP-1258

Просмотров: 1106


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)