Preview

Инфекция и иммунитет

Расширенный поиск

Оценка возрастной структуры больных корью c первичным и вторичным иммунным ответом за период 2010-2016 гг. в Российской Федерации

https://doi.org/10.15789/2220-7619-EOA-1407

Полный текст:

Аннотация

Материалом исследования служили сыворотки крови 5539 лиц в возрасте < 1—60 лет с клинически и лабораторно подтвержденной коревой инфекцией за 2010—2016 гг. Для всех больных корью определен тип иммунного ответа: первичный или вторичный. В исследование включены: дети < 1—14 лет (2381), подростки 15—17 лет (189) и взрослые 18—60 лет (2969). Тестирование сывороток на IgM проводилось с помощью тест-систем «ВектоКорь IgM» (Россия); определение концентрации и степени авидности IgG — «Anti-Measles Viruses ELISA/ IgG» и «Avidity: Anti-Measles Viruses ELISA/IgG» (Euroimmun, Германия). В основу интерпретации первичного иммунного ответа положено наличие в сыворотке специфических IgM и низкоавидных IgG. Вторичный иммунный ответ — положительный результат IgM и высокоавидные IgG в концентрации ≥ 5,0 МЕ/мл. Результаты исследования показали, что заболеваемость корью в 2010—2016 гг. поддерживалась детьми 1—2 лет — 39,9% от общего числа заболевших корью детей < 1—14 лет, а также взрослыми 18—40 лет — 80,1% от общего числа больных 15—60 лет. В сыворотках крови 5539 больных в 15,0% случаях IgG выявлены в диапазоне 8,5—45,0 МЕ/ мл (21,4+0,36) и имели высокую степень авидности от 80 до 100% (92,5±0,2). В остальных 85,0% случаев IgG были низкоавидными (< 30%) с концентрацией 0,2—3,46 МЕ/мл (1,73 +0,03). Анализ результатов показал, что у всех детей в возрасте до 14 лет формировался первичный иммунный ответ. Больных в возрасте 15—60 лет с первичным иммунным ответом, заболевание у которых можно было предотвратить вакцинацией, было 73,7%; лиц с «вакцинными неудачами» — 26,3%. Процент больных с «вакцинными неудачами» в годы относительного эпидемического благополучия — 2010 г. (0,09 на 100 тыс. населения) и 2016 г. (0,12 на 100 тыс. населения) составлял 35,3 и 18,2% соответственно, превышая 9,9% (р < 0,001) — показатель периода высокой заболеваемости в 2014 г. (3,24 на 100 тыс. населения). Полученные результаты свидетельствуют о циркуляции вируса кори среди лиц с «вакцинными неудачами», что может являться потенциалом распространения и заражения незащищенных групп населения и причиной возникновения вспышек кори в период эпидемического благополучия.

Об авторах

Т. А. Мамаева
ФБУН Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора
Россия

Мамаева Тамара Алексеевна - кандидат биологических наук, ведущий научный сотрудник лаборатории прикладной иммунохимии.

125212, Москва, ул. Адмирала Макарова, 10, Тел.: 8 (495) 452-28-26 (служебн.); 8 903 558-10-70 (моб.)



Н. В. Железнова
ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Кандидат биологических наук, ведущий научный сотрудник лаборатории вирусных гепатитов.

Санкт-Петербург



М. А. Бичурина
ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Доктор медицинских наук, зав. вирусологической лабораторией Центра по элиминации кори и краснухи.

Санкт-Петербург


М. А. Наумова
ФБУН Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Кандидат медицинских наук, старший научный сотрудник лаборатории прикладной иммунохимии.

Москва


М. В. Говорухина
ФГУЗ Центр гигиены и эпидемиологии в Ростовской области Роспотребнадзора

Кандидат медицинских наук, зав. вирусологической лабораторией.

Ростов-на-Дону


А. П. Топтыгина
ФБУН Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора

Доктор медицинских наук, руководитель лаборатории цитокинов.

Москва



Список литературы

1. Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. М.: Медицина, 1962. 182 с.

2. Мамаева Т.А., Железнова Н.В., Наумова М.А., Говорухина М.В., Калашникова Н.А, Бичурина М.А., Мукомолов С.Л. Алгоритм лабораторного подтверждения и дифференциальной диагностики коревой инфекции в период элиминации кори в Российской Федерации // Инфекция и иммунитет. 2015. Т. 5, № 1. С. 55-62. doi: 10.15789/2220-7619-2015-1-55-62 (In Russ.)

3. Мамаева Т.А., Липская Г.Ю., Наумова М.А., Шульга С.В., Mulders M., Featherstone D.A., Завьялова Л.А., Чернышова Е.В., Замятина Е.П., Кузнецова Н.Н. Особенности лабораторной диагностики кори у больных с разным прививочным анамнезом // Вопросы вирусологии. 2012. № 5. С. 21-26.

4. Мамаева Т.А, Наумова М.А., Железнова Н.В., Липская Г.Ю., Mulders M., Featherstone D.A. Оценка коммерческих тестсистем ИФА разного формата для определения уровня специфических IgM и IgG в сыворотках больных корью // Вопросы вирусологии. 2013. № 5. С. 43-48.

5. Мамаева Т.А., Тихонова Н.Т., Наумова М.А., Шульга С.В. Национальная лабораторная сеть Российской Федерации по диагностике кори и ее роль в выполнении программы ВОЗ по ликвидации кори // Здоровье населения и среда обитания. 2007. № 11 (176). С. 4-7.

6. Об обследовании больных с экзантемой и лихорадкой в рамках реализации Программы ликвидации кори. Приказ Роспотребнадзора № 33 от 05.02.2010. URL: http://docs.cntd.ru/document/902201050

7. Онищенко Г.Г., Попова А.Ю., Алешкин В.А. Корь в России: проблемы ликвидации. М.: Династия, 2017. 552 с.

8. СмердоваМ.А., Топтыгина А.П.,АндреевЮ.Ю.,СенниковС.В., ЗеткинА.Ю., КлыковаТ.Г.,БеляковС.И. Гуморальный и клеточный иммунитет к антигенам вируса кори и краснухи у здоровых людей // Инфекция и иммунитет. 2019. Т. 9, № 3-4. С. 607-611. doi: 10.15789/2220-7619-2019-3-4-607-611 (In Russ.)

9. Тихонова Н.Т., Мамаева Т.А., Шульга С.В., Ежлова Е.Б., Лыткина И.Н., Цвиркун О.В., Герасимова А.Г. Лабораторное обеспечение Программы ликвидации эндемичной кори в Российской Федерации // Эпидемиология и вакцинопрофилактика. 2011. № 1. С. 36-39.

10. Топтыгина А.П., Мамаева Т.А., Алешкин В.А. Особенности специфического гуморального иммунного ответа против вируса кори // Инфекция и иммунитет. 2013. № 3. С. 243-250. doi: 10.15789/2220-7619-2013-3-243-250(In Russ.)

11. Топтыгина А.П., Смердова М.А, Наумова М.А, Владимирова Н.П, Мамаева Т.А. Влияние особенностей популяционного иммунитета на структуру заболеваемости корью и краснухой // Инфекция и иммунитет. 2018. Т. 8, № 3. С. 341-348. doi: 10.15789/2220-7619-2018-3-341-348(In Russ.)

12. Цвиркун О.В., Герасимова А.Г., Тихонова Н.Т., Ежлова Е.Б., Мельникова А.А., Дубовицкая Е.Л., Орлова О.С., Басов А.А., Фролов Р.А. Заболеваемость корью в разных возрастных группах в период элиминации инфекции // Эпидемиология и вакцинопрофилактика. 2017. № 3 (94). С. 18—25.

13. Atrasheuskaya A.V., Kulak M.V., Neverov A.A., Rubin S.A., Ignatyev G.M. Measles cases in highly vaccinated population of Novosibirsk, Russia, 2000—2005. Vaccine, 2008, vol. 26, pp. 2111—2118. doi: 10.1016/j.vaccine.2008.02.028

14. Breackwell L., Moturi E., Helgenberger L., Gopalani S.V., Hales G., Lam E., Sharapov U., Larzeller M., Johnson E., Masao C., Setik E., Barrow L., Dolan S., Chen T.H., Patel M., Rota P., Hickman C., Bellini W., Seward J., Wallace G., Papania M. Measles outbreak assocated with vaccine failure in adults — Federated States of Micronesia February-August 2014. Morb. Mortal. Wkly Rep, 2015, vol. 64, pp. 1088-1092.

15. Chen R.T., Markowitz L.E., Albrect P., Stewart J.A., Mofenson L.M., Preblud S.R., Orenstein W.A. Measles antibody: reevaluation of protective titers. J. Infect. Dis., 1990, vol. 162 (5), pp. 1036-1042. doi:10.1093/infdis/162.5.1036

16. Cherry J.D., Zahn M. Clinical characteristics of measles in previously vaccinated and unvaccinated patients in California. Clin. Infect. Dis, 2018, vol. 67, pp. 1315-1319. doi: 10.1093/cid/ciy286

17. Christenson B., Botting M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine, 1994, vol. 12, no. 2, pp. 129-133. doi: 10.1016/0264-410X(94)90049-3

18. Davidkin I., Jokinen S, Broman M., Leinkki P., Peltola H. Persistence of measles, mumps, and rubella antibodies in an MMR-vaccinated cogort: a 20-years follow-up. J. Infect. Dis., 2008, vol. 197(7), pp. 950-956. doi: 10.1086/528993

19. De Vries R.D., de Swart R.L., Lamouille B., Astier A., Rabourdin-Combe C. Measles immune suppression: functional impairment or numbers game? PLoS Pathog., 2014, vol. 10, no. 12: e1004482. doi: 10.1371/journal.ppat.1004482

20. Durrhem D.N. Measles virus is unforgiving where immunity gaps exist. J. Infect. Dis., 2017, vol. 216 (10), pp. 1183-1184. doi: 10.1093/infdis/jix452

21. Durrhem D.N., Crowcroft N.S. The price of delaying measles eradication. The Lancet Public Health, 2017, vol. 2(3), pp. e130-e131. doi: 10.1016/S2468-2667(17)30026-9

22. Eaton L. Measles cases in England and Wales rise sharply in 2008. BMJ, 2009, vol. 338, p. b533.

23. Enders J.F., Peebles T.C. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. Exp. Biol. Med, 1954, vol. 86, no. 2, pp. 277-286. doi: 10.3181/00379727-86-21073

24. Funk S., Knapp J.K., Lebo E., Reef S.E., Dabbagh A., Kretsinger K., Jit M., Edmunds W.J., Strebel P.M. Combining serological and contact data to derive target immunity levels for achieving and maintaining measles elimination. BMC Med., 2019, vol. 17, no. 1:180. doi: 10.1186/s12916-019-1413-7

25. Griffin D.E. The immune response in measles: virus control, clearance and protective immunity. Viruses, 2016, vol. 8, no. 10:282. doi: 10.3390/V8100282

26. Griffin D.E., Lin W.H., Pan C.H. Measles virus, immune control and persistence. FEMS Microbiol. Rev., 2012, vol. 36, no. 3, pp. 649-662. doi: 10.1111/j.1574-6976.2012.00330.x

27. Hahne S.J.M., Nic Lochlainn L.M,. van Bugel N.D. Measles outbreak among previously immunized helthcae works, The Netherlands, 2014. J. Infect. Dis., 2016, vol. 214, no. 12, pp. 1980-1986. doi: 10.1093/infdis/jiw480

28. Hickman C.J., Hyde T.B., Sovers S.B., Mercader S., McGrew M., Williams N.J., Beeler J.A., Audet S., Kiehl B., Nandy R., Tamin A., Bellini W.J. Laboratory characterization of measles virus infection in previously vaccinated and unvaccinated individuals. J. Infect. Dis., 2011, vol. 204, no. 1, pp. 549-558. doi: 10.1093/infdis/jir106

29. Hubschen J.M., Bork S.M., Brown K.E., Mankertz A., Santibanez S., Ben Mamou M., Mulders M.N., Muller C.P. Challenges of measles and rubella laboratory diagnostic in the era of elimination. Clin. Microbiol. Infect., 2017, vol. 23, no. 8, pp. 511-515. doi: 10.1016/j.cmi.2017.04.009

30. Huiss S., Damien B. Schneider F., Muller C.P. Characteristics of asymptomatic secondary immune responces to MeV in late convalescent donors. Clin. Exp. Immunol., 1997, vol. 109, no. 3, pp. 416-420. doi: 10.1046/j1365-2249.1997.00137.x

31. Javelle E., Colson P., Parola P., Raoult D. Measles, the need for a paradigm shift. Eur. J. Epidemiol., 2019, vol. 34, no. 10, pp. 897915. doi: 10.1007/S10654-019-00569-4

32. Komabayashi K., Seto J., Tanaka S., Suzuki Yu., Ikeda T., Onuki N., Yamada K., Ahiko T., Ishikawa H., Mizuta K. The largest measles outbreak, including 38 modified measles and 22 typical measles cases in its elimination Era in Yamagata, Japan. 2017. Jpn. J. Infect. Dis, 2018, vol. 71,pp. 413-418. doi: 10.7883/yoken.JJID.2018.083

33. Manual for the laboratory diagnosis of measles and rubella virus infection; 2nd ed. Geneva, Switzerland: WHO, 2006.

34. Manual for the laboratory-based surveillance of measles, rubella, and congenital rubella syndrome; 3rd ed. Geneva, Switzerland: WHO, 2018.

35. Measles in Europe: record number of both sick and immunized. WHO Europe, Copenhagen, 7 February 2019. URL: https://www.euro.who.int/en/media-centre/sections/press-releases/2019/measles-in-europe-record-number-of-both-sick-and-immunized

36. McKee A., Ferrari M.J., Shea K. Correlation between measles vaccine doses: implications for the maintenance of elimination. Epidemiol. Infect, 2018, vol. 146, pp. 468-475. doi: 10.1017/S950268817003077

37. Mercades S., Garcia P., Bellini W.J. Measles virus IgG avidity assay for use in classification of measles vaccine failure in measles elimination setting. Clin. Vaccine Immunol, 2012, vol. 19, no. 11, pp. 1810-1817. doi: 10.1128/CVI.00406-12

38. Mina M.J. Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits. J. Infect., 2017, vol. 74, pp. 10-17. doi: 10.1016/S0163-4453(17)30185-8

39. Mina M.J., Metcalf C.J.E., de Swart R.L., Osterhaus A.D.M.E., Grenfell B.T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, vol. 348, no. 6235, pp. 694-699. doi: 10.1126/science.aaa3662. Epub 2015 8 may

40. Mitchell P., Turner N., Jennings L., Dong H. Previous vaccination modifies both the clinical disease and immunological features in children with measles. J. Prim. Health Care, 2013, vol. 5 (2), pp. 93—98.

41. Parent du Chatelet I., Floret D., Antona D., Levy-Bruhl D. Measles resurgence in France in 2008, a preliminary report. Euro Surveill., 2009, vol. 14:19118.

42. Patel M.K., Orenstein W.A. Classification of global measles cases in 2013—2017 as due to policy or vaccination failure:a retrospective rewiev of global surveilence data. Lancet Glob. Health, 2019, vol. 7, pp. e313-e320. doi: 10.1016/S2214-109X(18)30492-3

43. Paunio M., Hedman K., Davidkin I., Peltola H. IgG avidity to distinguish secondary from primary measles vaccination failures: prospects for a more effective global measles elimination strategy. Expert Opin. Phamacother., 2003, vol. 4 (8), pp. 1215—1225. doi: 10.1517/14656566.4.8.1215

44. Paunio M., Hedman K., Davidkin I., Valle M., Heinonen O.P., Leinikiki P., Salmi A., Peltola H. Secondary measles vaccine failures identified by measurement of IgG avidity: high occurrence among teenagers vaccinated at a young age. Epidemiol. Infect., 2000, vol. 124, pp. 263-271. doi: 10.1517/S0950268899003222

45. Ramssay M., Brown K. The public health implication of secondary measles vaccine failure. J. Prim. Health Care, 2013, vol. 5 (2), pp. 92-94. doi:10.1071/HC13092

46. Ratnam S., Tipples G., Head C., Fauvel M., Fearon M., Ward B.J. Perfomance of indirect immunoglobulin M (IgM) serology test and IgM capture assays for laboratory diagnosis of measles. J. Clin. Mic., 2000, no. 38, pp. 99-104.

47. Rosen J.B., Rota J.S., Hickman C.J., Sovers S.B., Mercader S., Rota P.A., Bellini W.J., Huang A.J., Doll M.K., Zucker J.R., Zimmerman C.M. Outbreak of measles among persons with prior evidence of ummunity, New York City, 2011. Clin. Infect. Dis., 2014, vol. 58 (9), pp. 1205-1210. doi: 10.1093/cid/ciu105

48. Rota J.S., Hickman C.J, Sovers S.B., Rota P.A., Mercader S., Bellini W.J. Two case studies of modified measles in vaccinated physicians exposed to primary measles case: high risk of infection but low risk of transmission. J. Infect. Dis., 2011, vol. 204 (1), pp. 5559-5563.

49. Rota P.A., Moss W.J., Takeda M, de Swart R.L., Thompson K.M., Goodson J.L. Measles. Nat. Rev. Dis. Primers, 2016, no. 2: 16049. doi: 10.1038/nrdp.2016.49

50. Sovers S.B., Rota J.S., Hickman C.J., Mercader S., Redd S., McNall R.J., Williams N., McGrew M., Walls M.L., Rota P.A., Bellini W.J. High concentration of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin. Vaccine Immunol., 2016, vol. 23, no. 8, pp. 707- 716. doi: 10.1128/CVI.00268-16

51. Sugerman D.E., Barskey A.E., Delea M.G., Ortega-Sanchez I.R., Bi D., Ralston K.G., Rota P.A., Waters-Montijo K., Lebaron C.W. Measles outbreak in a highly vaccinated population, San Diego, 2008: role internationally under vaccinated. Pediatrics, 2010, vol. 125, pp. 747-755.

52. Tahara M.,Burchert J.-P., Maena K., Muller C.P., Taceda M. Measles virus hemagglutinin protein epitopes: the basis of antigenic stability. Viruses, 2016, vol. 8:216. doi: 10.3390/V8080216

53. Vaccine Preventable Diseases Surveillance Standards, 2018. URL: http://www.who.int/immunization/monitoring_surveillance/bur-den/vpd/standards/en

54. Yang L., Grenfell B.T., Mina M.J. Measles vaccine immune escape: should we be concerned? Eur. J. Epidemiol., 2019, vol. 34, pp. 893-896. doi: 10.1007/s10654-019-00574-7

55. Zhang Z., Chen M., Ma R., Pan J., Suo L., Lu L. Outbreak ofmeasles among persons with secondary vaccine failure, China, 2018. Hum. Vaccin. Immunother., 2020, vol. 16, no. 2, pp. 358-362. doi: 10.1080/21645515.2019.1653742


Для цитирования:


Мамаева Т.А., Железнова Н.В., Бичурина М.А., Наумова М.А., Говорухина М.В., Топтыгина А.П. Оценка возрастной структуры больных корью c первичным и вторичным иммунным ответом за период 2010-2016 гг. в Российской Федерации. Инфекция и иммунитет. 2020;10(4):717-728. https://doi.org/10.15789/2220-7619-EOA-1407

For citation:


Mamaeva T.A., Zheleznova N.V., Bichurina M.A., Naumova M.A., Govoruhina M.V., Toptygina A.P. Evaluation of age-related distribution of measles cases with primary and secondary immune response in Russian Federation, 2010-2016. Russian Journal of Infection and Immunity. 2020;10(4):717-728. (In Russ.) https://doi.org/10.15789/2220-7619-EOA-1407

Просмотров: 377


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)