Preview

Инфекция и иммунитет

Расширенный поиск

Использование методов статистической филогенетики в вирусологии

https://doi.org/10.15789/2220-7619-TUO-1519

Полный текст:

Аннотация

Молекулярная филогенетика, и в частности статистическая филогенетика, широко применяется для решения фундаментальных и прикладных задач вирусологии. Байесовские, или статистические, филогенетические методы, вошедшие в практику 10—15 лет назад, значительно расширили круг вопросов, на которые можно получить ответы, исходя из анализа нуклеотидных и аминокислотных последовательностей. Возможность использования разных моделей эволюции позволяет восстанавливать хронологию, географию и динамику распространения инфекции. Например, при анализе последовательностей ВИЧ глобально распространенной группы M байесовскими методами филогеографического анализа было показано, что последний общий предок этих вирусов с вероятностью 99% возник в окрестностях города Киншаса (Демократическая Республика Конго) в начале 1920-х гг. В другой работе показали, что серотип вируса гриппа H9N2, скорее всего, перешел к человеку от диких уток в Гонконге в конце 60-х гг. ХХ в. Кроме того, при помощи байесовского анализа можно оценить влияние определенных событий или принимаемых мер на развитие эпидемического процесса. Так, например, ретроспективно было показано, что число заражений вирусом гепатита С в Египте увеличилось на несколько порядков в середине ХХ в. Резкий рост новых случаев связывают с началом лечения шистосомоза. Лекарство вводили при помощи уколов, нестерильные шприцы применяли многократно. Набор методов байесовского анализа был использован в десятках тысяч исследований, описывающих разные аспекты возникновения и распространения инфекционных заболеваний человека и животных. Сложность байесовских филогенетических методов определяет строгие требования к анализируемым данным. Корректность результатов филогенетического анализа зависит от ряда факторов. Например, необходим выбор эволюционной модели, наиболее адекватно описывающей исследуемые объекты. Обязательным этапом при формулировании результатов является обоснование выбранной модели. Для вирусов характерно заимствование генетических элементов из других организмов, поэтому геномы даже близкородственных вирусов могут иметь негомологичные участки, непригодные для филогенетического анализа. Другим условием является создание репрезентативной выборки исследуемых объектов. Зачастую в публикациях не указываются все этапы выполнения анализа, из-за чего полученные результаты могут трактоваться неоднозначно. Корректное использование методов статистической филогенетики в вирусологии возможно только при понимании принципов их работы, способов подготовки данных для анализа, критериев выбора эволюционных моделей для исследования.

Об авторах

Ю. А. Вакуленко
Институт медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского, Первый Московский государственный медицинский университет имени И.М. Сеченова; Московский государственный университет им. М.В. Ломоносова
Россия

Младший научный сотрудник Институт медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского, Первый МГМУ им. И.М. Сеченова; аспирант биологического факультета, МГУ им. М.В. Ломоносова.

Москва



А. Н. Лукашев
Институт медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского, Первый Московский государственный медицинский университет имени И.М. Сеченова; Институт молекулярной медицины, Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия

Доктор медицинских наук, член-корреспондент РАН, директор Института медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского, Первый МГМУ им. И.М. Сеченова; ведущий научный сотрудник, Институт молекулярной медицины, Первый МГМУ им. И.М. Сеченова.

Москва



А. А. Девяткин
Институт молекулярной медицины, Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия

Девяткин Андрей Андреевич - кандидат биологических наук, старший научный сотрудник, Институт молекулярной медицины.

119048, Москва, ул. Трубецкая, 8/2, Тел.: 8 (495) 609-14-00



Список литературы

1. Лукашов В.В. Молекулярная эволюция и филогенетический анализ. М.: БИНОМ. Лаборатория знаний, 2009. 256 с.

2. Abascal F., Zardoya R., Telford M.J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res., 2010, vol. 38: W7-13. doi: 10.1093/nar/gkq291

3. Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 1974, vol. 19, no. 6, pp. 716—723. doi: 10.1109/TAC.1974.1100705

4. Anderson R.M., May R.M. Population biology of infectious diseases: part I. Nature, 1979, vol. 280, no. 5721, pp. 361—367. doi: 10.1038/280361a0

5. Anderson R.M., May R.M., Jackson H.C., Smith A.M. Population dynamics of fox rabies in Europe. Nature, 1981, vol. 289, no. 5800, pp. 765-771. doi: 10.1038/289765a0

6. Arenas M. Trends in substitution models of molecular evolution. Front. Genet, 2015, vol. 6: 319. doi: 10.3389/fgene.2015.00319

7. Avise J.C. Phylogeography: retrospect and prospect. J. Biogeogr., 2009, vol. 36, no. 1, pp. 3-15. doi: 10.1111/j.1365-2699.2008.02032.x

8. Berry I.M., Ribeiro R., Kothari M., Athreya G., Daniels M., Lee H.Y., Bruno W., Leitner T. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J. Virol., 2007, vol. 81, no. 19, pp. 10625-10635. doi: 10.1128/jvi.00985-07

9. Botvinkin A., Kosenko M. Rabies in the european parts of Russia, Belarus and Ukraine. In: Historical perspective of rabies in Europe and the Mediterranean Basin: a testament to rabies. OIE: Paris, France, 2004, pp. 47-65.

10. Bouckaert R. Phylogeography by diffusion on a sphere: whole world phylogeography. Peer J., 2016, vol. 4: e2406. doi: 10.7717/peerj.2406

11. Bouckaert R., Heled J., Kuhnert D., Vaughan T., Wu C.H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 2014, vol. 10, no. 4, pp. 1-6. doi: 10.1371/journal.pcbi.1003537

12. Bouckaert R.R., Drummond A.J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol., 2017, vol. 17, no. 1, pp. 1-11. doi: 10.1186/s12862-017-0890-6

13. Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchene S., Fourment M., Gavryushkina A., Heled J., Jones G., Kuhnert D., Maio De N., Matschiner M., Mendes F.K., Muller N.F., Ogilvie H.A., Plessis du L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.H., Xie D., Zhang Ch., Stadler T., Drummond A.J. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol., 2019, vol. 15, no. 4: e1006650. doi: 10.1371/journal.pcbi.1006650

14. Choudhuri S. Phylogenetic Analysis. In: Bioinformatics for Beginners. Elsevier, 2014. pp 209-218.

15. Colijn C., Plazzotta G. A Metric on phylogenetic tree shapes. Syst. Biol., 2018, vol. 67, no. 1, pp. 113-126. doi: 10.1093/sysbio/syx046

16. Dayrat B. The roots of phylogeny: how did haeckel build his trees? Syst. Biol., 2003, vol. 52, no. 4, pp. 515-527. doi: 10.1080/10635150390218277

17. Deviatkin A.A., Kholodilov I.S., Vakulenko Yu.A., Karganova G.G., Lukashev A.N. Tick-Borne encephalitis virus: an emerging ancient zoonosis? Viruses, 2020, vol. 12, no. 2: 247. doi: 10.3390/v12020247

18. Deviatkin A.A., Lukashev A.N., Poleshchuk E.M., Dedkov V.G., Tkachev S.E., Sidorov G.N., Karganova G.G., Galkina I.V., Shchelkanov M.Yu., Shipulin G.A. The phylodynamics of the rabies virus in the Russian Federation. PLoS One, 2017, vol. 12, no. 2: e0171855. doi: 10.1371/journal.pone.0171855

19. Domingo E., Sheldon J., Perales C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev., 2012, vol. 76, no. 2, pp. 159-216. doi: 10.1128/MMBR.05023-11

20. Drake J.W., Holland J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci., 1999, vol. 96, no. 24, pp. 13910-13913. doi: 10.1073/pnas.96.24.13910

21. Drummond A.J. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1185-1192. doi: 10.1093/molbev/msi103

22. Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol., 2006, vol. 4, no. 5: e88. doi: 10.1371/journal.pbio.0040088

23. Drummond A.J., Pybus O.G., Rambaut A., Roald F., Rodrigo A.G. Measurably evolving populations. Trends Ecol. Evol., 2003, vol. 18, no. 9, pp. 481-488. doi: 10.1016/S0169-5347(03)00216-7

24. Drummond A.J., Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol., 2007, vol. 7, no. 1: 214. doi: 10.1186/1471-2148-7-214

25. Drummond A.J., Suchard M.A. Bayesian random local clocks, or one rate to rule them all. BMC Biol., 2010, vol. 8, no. 1: 114. doi: 10.1186/1741-7007-8-114

26. Dudas G., Carvalho L.M., Rambaut A., Bedford T. MERS-CoV spillover at the camel-human interface. Elife, 2018, vol. 7: e31257. doi: 10.7554/eLife.31257

27. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792-1797. doi: 10.1093/nar/gkh340

28. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, vol. 26, no. 19, pp. 2460-2461. doi: 10.1093/bioinformatics/btq461

29. Fan Y., Wu R., Chen M.-H., Kuo L., Lewis P.O. Choosing among partition models in Bayesian phylogenetics. Mol. Biol. Evol., 2011, vol. 28, no. 1, pp. 523-532. doi: 10.1093/molbev/msq224

30. Faria N.R., Rambaut A., Suchard M.A., Baele G., Bedford T., Ward M.J., Tatem A.J., Sousa J.D., Arinaminpathy N., Pepin J., Posada D., Peeters M., Pybus O.G., Lemey P. The early spread and epidemic ignition of HIV-1 in human populations. Science, 2014, vol. 346, no. 6205, pp. 56-61. doi: 10.1126/science.1256739

31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 1981, vol. 17, no. 6, pp. 368-376. doi: 10.1007/BF01734359

32. Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, vol. 28, no. 23, pp. 3150-3152. doi: 10.1093/bioinformatics/bts565

33. Gaut B.S., Lewis P.O. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol., 1995, vol. 12, no. 1, pp. 152-162. doi: 10.1093/oxfordjournals.molbev.a040183

34. Gibbs M.J., Armstrong J.S., Gibbs A.J. Sister-scanning: a Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics, 2000, vol. 16, no. 7, pp. 573-582. doi: 10.1093/bioinformatics/16.7.573

35. Gire S.K., Goba A., Andersen K.G., Sealfon R.S., Park D.J., Kanneh L., Jalloh S., Momoh M., Fullah M., Dudas G., Wohl S., Moses L.M., Yozwiak N.L., Winnicki S., Matranga C.B., Malboeuf C.M., Qu J., Gladden A.D., Schaffner S.F., Yang X., Jiang P.P., Nekoui M., Colubri A., Coomber M.R., Fonnie M., Moigboi A., Gbakie M., Kamara F.K., Tucker V., Konuwa E., Saffa S., Sellu J., Jalloh A.A., Kovoma A., Koninga J., Mustapha I., Kargbo K., Foday M., Yillah M., Kanneh F., Robert W., Massally J.L., Chapman S.B., Bochicchio J., Murphy C., Nusbaum C., Young S., Birren B.W., Grant D.S., Scheiffelin J.S., Lander E.S., Happi C., Gevao S.M., Gnirke A., Rambaut A., Garry R.F., Khan S.H., Sabeti P.C. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, vol. 345, no. 6202, pp. 1369-1372. doi: 10.1126/science.1259657

36. Griffiths R.C., Tavare S. Sampling theory for neutral alleles in a varying environment. Philos. Trans. R. Soc. London Ser. B. Biol. Sci., 1994, vol. 344, no. 1310, pp. 403-410. doi: 10.1098/rstb.1994.0079

37. Higgins D.G., Sharp P.M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 1988, vol. 73, no. 1, pp. 237-244. doi: 10.1016/0378-1119(88)90330-7

38. Hill V., Baele G. Bayesian estimation of past population dynamics in BEAST 1.10 using the skygrid coalescent model. Mol. Biol. Evol., 2019, vol. 36, no. 11, pp. 2620-2628. doi: 10.1093/molbev/msz172

39. Ho S.Y.W., Duchene S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol., 2014, vol. 23, no. 24, pp. 5947-5965. doi: 10.1111/mec.12953

40. Jeffreys H. Some tests of significance, treated by the theory of probability. Math Proc. Cambridge Philos. Soc., 1935, vol. 31, no. 2, pp. 203-222. doi: 10.1017/S030500410001330X

41. Jorba J., Campagnoli R., De L., Kew O. Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J. Virol., 2008, vol. 82, no. 9, pp. 4429-4440. doi: 10.1128/JVI.02354-07

42. Jukes T., Cantor C. Evolution of protein molecules. In: Mammalian protein metabolism. New York: Academic Press, 1969, pp. 21-132.

43. Kainer D., Lanfear R. The effects of partitioning on phylogenetic inference. Mol. Biol. Evol., 2015, vol. 32, no. 6, pp. 1611-1627. doi: 10.1093/molbev/msv026

44. Kass R., Raftery A. Bayes factors. J. Am. Stat. Assoc., 1995, vol. 90, pp. 773-795. doi: 10.2307/2291091

45. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772-780. doi: 10.1093/molbev/mst010

46. Keane T.M., Creevey C.J., Pentony M.M., Al E. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol., vol. 6: 29. doi: 10.1186/1471-2148-6-29

47. Keeling M.J., Rohani P. Modeling infectious diseases in humans and animals. New Jersey: Princeton University Press, 2007. 408 p.

48. Kingman J.F.C. The coalescent. Stoch. Process. Their Appl., 1982, vol. 13, no. 3, pp. 235-248. doi: 10.1016/0304-4149(82)90011-4

49. Koonin E.V., Dolja V.V., Krupovic M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology, 2015, vol. 479-480, pp. 2-25. doi: 10.1016/j.virol.2015.02.039

50. Kuhner M.K., Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 1994, vol. 11, no. 3, pp. 459-468. doi: 10.1093/oxfordjournals.molbev.a040126

51. Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 772-773. doi: 10.1093/molbev/msw260

52. Lartillot N., Philippe H. Computing bayes factors using thermodynamic integration. Syst. Biol., 2006, vol. 55, no. 2, pp. 195-207. doi: 10.1080/10635150500433722

53. Lemey P., Rambaut A., Drummond A.J., Suchard M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol., 2009, vol. 5, no. 9: e1000520. doi: 10.1371/journal.pcbi.1000520

54. Lemey P., Rambaut A., Welch J.J., Suchard M.A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol., 2010, vol. 27, no. 8, pp. 1877-1885. doi: 10.1093/molbev/msq067

55. Maio De N., Wu C.H., O’Reilly K.M., Wilson D. New routes to phylogeography: a Bayesian structured coalescent approximation. PLOS Genet., 2015, vol. 11, no. 8: e1005421. doi: 10.1371/journal.pgen.1005421

56. Margoliash E. Primary structure and evolution of cytochrome C. Proc. Natl. Acad. Sci., 1963, vol. 50, no. 4, pp. 672-679. doi: 10.1073/pnas.50.4.672

57. Martin D.P., Murrell B., Golden M. Khoosal A., Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol., 2015, vol. 1, no. 1, pp. 1-5. doi: 10.1093/ve/vev003

58. Nascimento F.F., dos Reis M., Yang Z. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol., 2017, vol. 1, no. 10, pp. 1446-1454. doi: 10.1038/s41559-017-0280-x

59. Needleman S.B., Wunsch C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 1970, vol. 48, no. 3, pp. 443-453. doi: 10.1016/0022-2836(70)90057-4

60. Notredame C., Higgins D.G., Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol., 2000, vol. 302, no. 1, pp. 205-217. doi: 10.1006/jmbi.2000.4042

61. Parag K.V., Pybus O.G. Exact Bayesian inference for phylogenetic birth-death models. Bioinformatics, 2018, vol. 34, no. 21, pp. 3638-3645. doi: 10.1093/bioinformatics/bty337

62. Pybus O.G. The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. Mol. Biol. Evol., 2003, vol. 20, no. 3, pp. 381-387. doi: 10.1093/molbev/msg043

63. Rambaut A., Lam T., Carvalho L., Pybus O. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol., 2016, vol. 2, no. 1: vew007. doi: 10.1093/ve/vew007

64. Rannala B., Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol., 1996, vol. 43, no. 3, pp. 304-311. doi: 10.1007/PL00006090

65. Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet., 2000, vol. 16, no. 6, pp. 276-277. doi: 10.1016/S0168-9525(00)02024-2

66. Russel P.M., Brewer B.J., Klaere S., Bouckaert R.R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol., 2019, vol. 68, no. 2, pp. 219-233. doi: 10.1093/sysbio/syy050

67. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406-425. doi: 10.1093/oxfordjournals.molbev.a040454

68. Schwarz G. Estimating the dimension of a model. Ann. Stat., 1978, vol. 6, no. 2, pp. 461-464. doi: 10.1214/aos/1176344136

69. Shaman J., Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 9, pp. 3243-3248. doi: 10.1073/pnas.0806852106

70. Sinsheimer J.S., Lake J.A., Little R.J.A. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data. Biometrics, 1996, vol. 52, no. 1: 193. doi: 10.2307/2533156

71. Skilling J. Nested sampling for general Bayesian computation. Bayesian Anal., 2006, vol. 1, no. 4, pp. 833-860. doi: 10.1214/06-BA127

72. Smith T.F., Waterman M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, vol. 147, no. 1, pp. 195-197. doi: 10.1016/0022-2836(81)90087-5

73. Song W., Qin K. Human-infecting influenza A (H9N2) virus: a forgotten potential pandemic strain? Zoonoses Public Health, 2020, vol. 67, no. 3, pp. 203-212. doi: 10.1111/zph.12685

74. Stadler T., Kuhnert D., Bonhoeffer S., Drummond A.J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci., 2013, vol. 110, no. 1, pp. 228-233. doi: 10.1073/pnas.1207965110

75. Stadler T., Kouyos R., Wyl V. von, Yerly S., Boni J., Burgisser P., Klimkait T., Joos B., Rieder P., Xie D., Gunthard H.F., Drummond A.J. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol., 2012, vol. 29, no. 1, pp. 347357. doi: 10.1093/molbev/msr217

76. Stadler T., Vaughan T.G., Gavryushkin A., Guindon S., Kuhnert D., Leventhal G.E., Drummond A.J. How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics? Proc. R. Soc. B. Biol. Sci., 2015, vol. 282, no. 1806: 20150420. doi: 10.1098/rspb.2015.0420

77. Stadler T., Yang Z. Dating phylogenies with sequentially sampled tips. Syst. Biol., 2013, vol. 62, no. 5, pp. 674-688. doi: 10.1093/sysbio/syt030

78. Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, vol. 24, no. 6, pp. 490-502. doi: 10.1016/j.tim.2016.03.003

79. Suchard M., Lemey P., Baele G., Ayres D.L., Drummond A.J., Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol., 2018, vol. 4, no. 1: vey016. doi: DOI:10.1093/ve/vey016

80. Suchard M.A., Weiss R.E., Sinsheimer J.S. Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol., 2001, vol. 18, no. 6, pp. 1001-1013. doi: 10.1093/oxfordjournals.molbev.a003872

81. Tateno Y., Takezaki N., Nei M. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol. Biol. Evol., 1994, vol. 11, no. 2, pp. 261-277. doi: 10.1093/oxfordjournals.molbev.a040108

82. Vakulenko Yu., Deviatkin A., Lukashev A. The effect of sample bias and experimental artefacts on the statistical phylogenetic analysis of picornaviruses. Viruses, 2019, vol. 11, no. 11: 1032. doi: 10.3390/v11111032

83. Vakulenko Yu., Deviatkin A., Lukashev A. Using statistical phylogenetics for investigation of enterovirus 71 genotype A reintroduction into circulation. Viruses, 2019, vol. 11, no. 10: 895. doi: 10.3390/v11100895

84. Vaughan T.G., Leventhal G.E., Rasmussen D.A., Drummond A.J., Welch D., Stadler T. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol., 2019, vol. 36, no. 8, pp. 1804-1816. doi: 10.1093/molbev/msz106

85. Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J. Jalview Version 2 — a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, vol. 25, no. 9, pp. 1189-1191. doi: 10.1093/bioinformatics/btp033

86. Welch J., Bromham L. Molecular dating when rates vary. Trends Ecol. Evol., 2005, vol. 20, no. 6, pp. 320-327. doi: 10.1016/j.tree.2005.02.007

87. Worobey M., Han G.-Z., Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature, 2014, vol. 508, no. 7495, pp. 254-257. doi: 10.1038/nature13016

88. Worobey M., Watts T.D., McKay R.A., Suchard M.A., Granade T., Teuwen D.E., Koblin B.A., Heneine W., Lemey P., Jaffe H.W. 1970s and ‘Patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 2016, vol. 539, no. 7627, pp. 98-101. doi: 10.1038/nature19827

89. Xie W., Lewis P.O., Fan Y., Kuo L., Chen M.H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol., 2011, vol. 60, no. 2, pp. 150-160. doi: 10.1093/sysbio/syq085

90. Yang B., Liu F., Liao Q., Wu P., Chang Z., Huang J., Long L., Luo L., Li Y., Leung G.M., Cowling B.J., Yu H. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. Euro Surveill., 2017, vol. 22, no. 50: 16-00824. doi: 10.2807/1560-7917.ES.2017.22.50.16-00824

91. Yang J., Xie D., Nie Z., Xu B., Drummond A.J. Inferring host roles in Bayesian phylodynamics of global avian influenza A virus H9N2. Virology, 2019, vol. 538, pp. 86-96. doi: 10.1016/i.virol.2019.09.011

92. Yule G.U. Mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R., 1924, vol. B213, pp. 21-87.

93. Zhu J., Luo Z., Wang J., Xu Z., Chen H., Fan D., Gao N., Ping G., Zhou Z., Zhang Y., An J. Phylogenetic analysis of enterovirus 71 circulating in Beijing, China from 2007 to 2009. PLoS One, 2013, vol. 8, no. 2: e56318. doi: 10.1371/journal.pone.0056318

94. Zuckerkandl E., Pauling L. Molecular disease, evolution, and genic heterogeneity. In: Horizons in Biochemistry. New York: Academic Press, 1962, pp. 189-225.

95. Zuckerkandl E., Pauling L. Molecules as documents of history. J. Theor. Biol., 1965, vol. 8, no. 2, pp. 357-366.


Дополнительные файлы

Для цитирования:


Вакуленко Ю.А., Лукашев А.Н., Девяткин А.А. Использование методов статистической филогенетики в вирусологии. Инфекция и иммунитет. 2021;11(1):42-56. https://doi.org/10.15789/2220-7619-TUO-1519

For citation:


Vakulenko Yu.A., Lukashev A.N., Deviatkin A.A. The use of statistical phylogenetics in virology. Russian Journal of Infection and Immunity. 2021;11(1):42-56. (In Russ.) https://doi.org/10.15789/2220-7619-TUO-1519

Просмотров: 212


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)