Preview

Инфекция и иммунитет

Расширенный поиск

ПОЛ ПАЦИЕНТА ВЛИЯЕТ НА ОТВЕТ СИСТЕМ ОРГАНИЗМА И КЛИНИЧЕСКИЙ ИСХОД ПРИ COVID-19

https://doi.org/10.15789/2220-7619-GRR-1664

Полный текст:

Аннотация

Коронавирус, подобный вирусу тяжелого острого респираторного синдрома (SARS) (SARS-CoV-2), является седьмым представителем семейства коронавирусов (CoV), который поражает людей и вызывает коронавирусное заболевание 2019г. (COVID-19), которое в настоящее время является глобальной пандемией. Было показано, что на ранней стадии в тяжелых случаях заболевания происходит масштабная секреция цитокинов, что может быть значимым фактором быстрого прогрессирования заболевания. Системное воспаление указывает на запущенную стадию острого заболевания, которое характеризуется полиорганной недостаточностью и повышенным уровнем ключевых воспалительных маркеров. Проведенные исследования показали гендерную разницу между уровнем заболеваемости и смертности от COVID-19. В этом обзоре мы исследовали гендерные различия в системных эффектах COVID-19 и обнаружили, что такие гендерные различия отмечаются особенно в дыхательной, сердечно-сосудистой, печеночной, желудочно-кишечной и почечной системах. На основании регистрации более худшего исхода COVID-19 у мужчин, отмечено влияние женских половых гормонов в возникновении таких гендерных различий. Женские половые гормоны, особенно эстроген и, возможно, прогестерон, могут оказывать системное и местное действие на различные типы клеток, а также регулировать локальные уровни ангиотен-зинпревращающего фермента 2 (ACE2). Установлено, что вирус SARS-CoV-2 проникает в клетку через ACE2. Мы полагаем, что рассмотренные в настоящем обзоре гендерные различия позволят улучшить ведение пациентов с COVID-19.

Об авторах

M. Хаксари
Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
Иран


Н. Сабэт
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
Иран


З. Солтани
Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran,
Иран


Х. Башири
Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Sirjan Faculty of Medial Sciences, Sirjan, Kerman, Iran
Иран


Список литературы

1. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. September 2020.

2. Das G, Mukherjee N, Ghosh S. Neurological insights of COVID-19 pandemic. ACS chemical neuroscience. 2020;11(9):1206-9.

3. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020;11(7):995-8.

4. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS letters. 2002;532(1-2):107-10.

5. Wong SH, Lui RN, Sung JJ. Covid‐19 and the digestive system. Journal of gastroenterology and hepatology. 2020;35(5):744-8.

6. Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Frontiers in cellular neuroscience. 2018;12:386.

7. Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus research. 2014;194:145-58.

8. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):1-28.

9. Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163-9.

10. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID‐19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;296(2):E119-120.

11. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, Sánchez-Larsen Á, Layos-Romero A, García-García J, et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology. 2020;95(8):e1060-1070.

12. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J. & Nakao, A. A first Case of Meningitis/Encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases.2020;94:55-58.

13. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, behavior, and immunity. 2020;87:18-22.

14. Mehta P, Mcauley D, Brown M, Sanchez E, Tattersall R, Manson J, et al. Correspondence COVID-19: consider cytokine storm syndromes and. Lancet. 2020; 395(10229): 1033–1034.

15. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. The Journal of Heart and Lung Transplantation. 2020;39(5):405-407.

16. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine. 2020;46(5):846-8.

17. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061-9.

18. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.

19. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews. 2012;76(1):16-32.

20. vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis. PLoS pathogens. 2016.

21. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. The Journal of Immunology. 2017;198(10):4046-53.

22. Vermillion MS, Ursin RL, Kuok DI, Vom Steeg LG, Wohlgemuth N, Hall OJ, et al. Production of amphiregulin and recovery from influenza is greater in males than females. Biology of sex Differences. 2018;9(1):1-12.

23. Meng Y, Wu P, Lu W, Liu K, Ma K, Huang L, et al. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. PLoS pathogens. 2020.

24. Stelzig KE, Canepa-Escaro F, Schiliro M, Berdnikovs S, Prakash Y, Chiarella SE. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020.

25. Dana PM, Sadoughi F, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B, et al. An Insight into the Sex Differences in COVID-19 Patients: What are the Possible Causes? Prehospital and disaster medicine. 2020;35(4):438-41.

26. Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. Frontiers in Public Health. 2020;8:152.

27. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? International Journal of Molecular Sciences. 2020;21(10):1-23.

28. Binder E, Künzel H, Nickel T, Kern N, Pfennig A, Majer M, et al. HPA-axis regulation at in-patient admission is associated with antidepressant therapy outcome in male but not in female depressed patients. Psychoneuroendocrinology. 2009;34(1):99-109.

29. Darnall BD, Suarez EC. Sex and gender in psychoneuroimmunology research: past, present and future. Brain, Behavior, and Immunity. 2009;23(5):595-604.

30. Byrnes JP, Miller DC, Schafer WD. Gender differences in risk taking: a meta-analysis. Psychological bulletin. 1999;125(3):367-383.

31. Blau FD, Kahn LM. Gender differences in pay. Journal of Economic perspectives. 2000;14(4):75-99.

32. Brown RP, Josephs RA. A burden of proof: Stereotype relevance and gender differences in math performance. Journal of personality and social psychology. 1999;76(2):246.

33. Haist SA, Wilson JF, Elam CL, Blue AV, Fosson SE. The effect of gender and age on medical school performance: an important interaction. Advances in health sciences Education. 2000;5(3):197-205.

34. Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. 2020;34(2):339-343.

35. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312(5780):1669-72.

36. Hill-Burns EM, Clark AG. X-linked variation in immune response in Drosophila melanogaster. Genetics. 2009;183(4):1477-91.

37. Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. PLoS pathogens. 2020;16(6):e1008570.

38. Soltani Z, Shahrokhi N, Karamouzian S, Khaksari M, Mofid B, Nakhaee N, et al. Does progesterone improve outcome in diffuse axonal injury? Brain Injury. 2017;31(1):16-23.

39. Sarkaki AR, Khaksari Haddad M, Soltani Z, Shahrokhi N, Mahmoodi M. Time-and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. Journal of neurotrauma. 2013;30(1):47-54.

40. Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nature Reviews Immunology. 2010;10(8):594-604.

41. Rettew JA, Huet-Hudson YM, Marriott I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biology of reproduction. 2008;78(3):432-7.

42. Straub RH. The complex role of estrogens in inflammation. Endocrine reviews. 2007;28(5):521-74.

43. Moieni M, Muscatell KA, Jevtic I, Breen EC, Irwin MR, Eisenberger NI. Sex differences in the effect of inflammation on subjective social status: a randomized controlled trial of endotoxin in healthy young adults. Frontiers in psychology. 2019;10:2167.

44. Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes. Endocrinology. 2020;161(9):1-8.

45. Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. Journal of Pharmacy & Pharmaceutical Sciences. 2020;23:75-85.

46. Taneja V. Sex hormones determine immune response. Frontiers in immunology. 2018;9:1931.

47. Bartz D, Chitnis T, Kaiser UB, Rich-Edwards JW, Rexrode KM, Pennell PB, et al. Clinical advances in sex-and gender-informed medicine to improve the health of all: a review. JAMA Internal Medicine. 2020;180(4):574-83.

48. Amadori A, Zamarchi R, De Silvestro G, Forza G, Cavatton G, Danieli GA, et al. Genetic control of the CD4/CD8 T-cell ratio in humans. Nature medicine. 1995;1(12):1279-83.

49. Phiel KL, Henderson RA, Adelman SJ, Elloso MM. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunology letters. 2005;97(1):107-13.

50. Piccinni M-P, Giudizi M-G, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. The Journal of Immunology. 1995;155(1):128-33.

51. Szekeres-Bartho J, Wegmann T. A progesterone-dependent immunomodulatory protein alters the Th1Th2 balance. Journal of reproductive immunology. 1996;31(1-2):81-95.

52. Hall OJ, Limjunyawong N, Vermillion MS, Robinson DP, Wohlgemuth N, Pekosz A, et al. Progesterone-based therapy protects against influenza by promoting lung repair and recovery in females. PLoS pathogens. 2016;12(9):e1005840.

53. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism. 2018;103(5):1715-44.

54. Maggio M, Basaria S, Ceda G, Ble A, Ling S, Bandinelli S, et al. The relationship between testosterone and molecular markers of inflammation in older men. Journal of endocrinological investigation. 2005;28(4):116-9.

55. Mohamad N-V, Wong SK, Hasan WNW, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, et al. The relationship between circulating testosterone and inflammatory cytokines in men. The Aging Male. 2018;22(2):129-140.

56. Spagnolo PA, Manson JE, Joffe H. Sex and gender differences in health: What the COVID-19 pandemic can teach us. American College of Physicians; 2020.

57. Papadopoulos V, Li L, Samplaski M. Why does COVID‐19 kill more elderly men than women? Is there a role for testosterone? Andrology. 2020;00:1-8.

58. Karaahmet F, Karaahmet OZ. Potential effect of natural and anabolizan steroids in elderly patient with COVID-19. Medical Hypotheses. 2020;140:109772.

59. Pinzon RT, Wijaya VO, Buana RB, Al Jody A, Nunsio PN. Neurologic Characteristics in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Frontiers in Neurology. 2020;11:565.

60. Ellul M, Solomon T. Acute encephalitis–diagnosis and management. Clinical Medicine. 2018; 18(2):155–159.

61. Xiang P, Xu X, Gao L, Wang H, Xiong H, Li R. First case of 2019 novel coronavirus disease with encephalitis. ChinaXiv. 2020.

62. Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated with influenza and other viral infections. Acta Neurologica Scandinavica. 2007;115:45-56.

63. Tauber SC, Eiffert H, Brück W, Nau R. Septic encephalopathy and septic encephalitis‬‬. Expert Review of Anti-infective Therapy. 2017;15(2):121-32.

64. Young GB. Encephalopathy of infection and systemic inflammation. Journal of Clinical Neurophysiology. 2013;30(5):454-61.

65. Dobbs MR, editor Toxic encephalopathy. Seminars in neurology; 2011;31(2):184-193.

66. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research. 2020;7:11

67. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. 2020.

68. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020;8(4):420-2.

69. Elkind MS. Why now? Moving from stroke risk factors to stroke triggers. Current opinion in neurology. 2007;20(1):51-7.

70. Warren-Gash C, Blackburn R, Whitaker H, McMenamin J, Hayward AC. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland. European Respiratory Journal. 2018;51(3).

71. Muhammad S, Haasbach E, Kotchourko M, Strigli A, Krenz A, Ridder DA, et al. Influenza virus infection aggravates stroke outcome. Stroke. 2011;42(3):783-91.

72. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 2020;395(10229):1033.

73. Chen C, Zhang X, Ju Z, He W. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua shao shang za zhi= Zhonghua shaoshang zazhi= Chinese journal of burns. 2020;36:E005-E.

74. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of medical virology. 2020;92(6):552-5.

75. Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin‐converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. Journal of neurochemistry. 2016;138(1):74-85.

76. Xia H, Lazartigues E. Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Current hypertension reports. 2010;12(3):170-5.

77. Toljan K. Letter to the Editor Regarding the Viewpoint “Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanism”. ACS chemical neuroscience. 2020;11(8):1192-4.

78. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020:201187.

79. Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging clinics of North America. 2008;18(1):149-61.

80. Mikkelsen K, Stojanovska L, Polenakovic M, Bosevski M, Apostolopoulos V. Exercise and mental health. Maturitas. 2017;106:48-56.

81. Fu W, Wang C, Zou L, Guo Y, Lu Z, Yan S, et al. Psychological health, sleep quality, and coping styles to stress facing the COVID-19 in Wuhan, China. Translational psychiatry. 2020;10(1):1-9.

82. Hassanzadeh K, Perez Pena H, Dragotto J, Buccarello L, Iorio F, Pieraccini S, et al. Considerations around the SARS-CoV-2 Spike Protein with particular attention to COVID-19 brain infection and neurological symptoms. ACS chemical neuroscience. 2020;11(15):2361-9.

83. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13.

84. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20.

85. Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Critical care. 2017;21:305.

86. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine. 2020; 383:120-128.

87. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Translational Research. 2020;220:1-13.

88. McGonagle D, O'Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. The Lancet Rheumatology. 2020;2(7):437-445.

89. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020;395(10234):1417-8.

90. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296(2):115-117.

91. Bösmüller H, Traxler S, Bitzer M, Häberle H, Raiser W, Nann D, et al. The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation. Virchows Archiv. 2020; 477:349–357.

92. Wei X, Xiao Y-T, Wang J, Chen R, Zhang W, Yang Y, et al. Sex differences in severity and mortality among patients with COVID-19: evidence from pooled literature analysis and insights from integrated bioinformatic analysis. arXiv preprint arXiv. 2020.

93. Haeggström A, Östberg B, Stjerna P, Graf P, Hallén H. Nasal mucosal swelling and reactivity during a menstrual cycle. Orl. 2000;62(1):39-42.

94. Toppozada H, Toppozada M, El-Ghazzawi I, Elwany S. The human respiratory nasal mucosa in females using contraceptive pills: An ultramicroscopic and histochemical study. The Journal of Laryngology & Otology. 1984;98(1):43-51.

95. Tam A, Wadsworth S, Dorscheid D, Man S-FP, Sin DD. Estradiol increases mucus synthesis in bronchial epithelial cells. PloS one. 2014;9(6):e100633.

96. Grandi G, Facchinetti F, Bitzer J. The gendered impact of coronavirus disease (COVID-19): do estrogens play a role? The European Journal of Contraception & Reproductive Health Care. 2020;25(3): 233–234.

97. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA cardiology. 2020;5(7):802-810.

98. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17:259-60.

99. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):685-691.

100. He J, Wu B, Chen Y, Tang J, Liu Q, Zhou S, et al. Characteristic ECG manifestations in patients with COVID-19. Canadian Journal of Cardiology. 2020;36(6):966.e1-966.e4.

101. Jain S, Workman V, Ganeshan R, Obasare ER, Burr A, DeBiasi RM, et al. Enhanced electrocardiographic monitoring of patients with coronavirus disease 2019. Heart rhythm. 2020;17(9): 1417–1422.

102. Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends in pharmacological sciences. 2004;25(6):291-4.

103. Guo J, Huang Z, Lin L, Lv J. Coronavirus disease 2019 (covid‐19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin‐converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. Journal of the American Heart Association. 2020;9(7):e016219.

104. Oudit G, Kassiri Z, Jiang C, Liu P, Poutanen S, Penninger J, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European journal of clinical investigation. 2009;39(7):618-25.

105. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews. 2018;98(1):505-53.

106. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature medicine. 2005;11(8):875-9.

107. Mingels AM, Kimenai DM. Sex-related aspects of biomarkers in cardiac disease. Sex-Specific Analysis of Cardiovascular Function: Springer; 2018. p. 545-64.

108. Trial WGftP. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. Jama. 1995;273(3):199-208.

109. Kypreos KE, Zafirovic S, Petropoulou P-I, Bjelogrlic P, Resanovic I, Traish A, et al. Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology. Journal of cardiovascular Pharmacology and Therapeutics. 2014;19(3):256-68.

110. Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biology of sex differences. 2010;1(1):6.

111. Fischer M, Baessler A, Schunkert H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovascular research. 2002;53(3):672-7.

112. Joyner J, Neves LA, Granger JP, Alexander BT, Merrill DC, Chappell MC, et al. Temporal-spatial expression of ANG-(1-7) and angiotensin-converting enzyme 2 in the kidney of normal and hypertensive pregnant rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007;293(1):R169-R77.

113. Ji H, Menini S, Zheng W, Pesce C, Wu X, Sandberg K. Role of angiotensin‐converting enzyme 2 and angiotensin (1–7) in 17β‐oestradiol regulation of renal pathology in renal wrap hypertension in rats. Experimental physiology. 2008;93(5):648-57.

114. Shenoy V, Grobe J, Qi Y, Ferreira A, Fraga-Silva R, Collamat G, et al. 17β-Estradiol modulates local cardiac renin-angiotensin system to prevent cardiac remodeling in the DOCA-salt model of hypertension in rats. Peptides. 2009;30(12):2309-15.

115. Ferreira AJ, Murça TM, Fraga-Silva RA, Castro CH, Raizada MK, Santos RA. New cardiovascular and pulmonary therapeutic strategies based on the Angiotensin-converting enzyme 2/angiotensin-(1–7)/mas receptor axis. International Journal of Hypertension. 2012.

116. Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, et al. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Experimental Biology and Medicine. 2017;242(14):1412-23.

117. Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure. Circulation Journal. 2010;74(7):1265-73.

118. Seeland U, Regitz-Zagrosek V. Sex and gender differences in cardiovascular drug therapy. Sex and Gender Differences in Pharmacology: Springer; 2013. p. 211-36.

119. Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the angiotensin converting enzyme 2-angiotensin (1–7)-Mas receptor axis: fetal programing, sex differences, and intracellular pathways. Frontiers in endocrinology. 2014;4:201.

120. Berthelot J-M, Drouet L, Lioté F. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerging microbes & infections. 2020;9(1):1514-22.

121. Li H, Liu Z, Gou Y, Yu H, Siminelakis S, Wang S, et al. Estradiol mediates vasculoprotection via ERRα-dependent regulation of lipid and ROS metabolism in the endothelium. Journal of Molecular and Cellular Cardiology. 2015;87:92-101.

122. Moreau KL. Intersection between gonadal function and vascular aging in women. Journal of Applied Physiology. 2018;125(12):1881-7.

123. Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. American Journal of Physiology-Heart and Circulatory Physiology. 2018;315(6):H1569-H88.

124. Kelly DM, Jones TH. Testosterone: a vascular hormone in health and disease. J Endocrinol. 2013;217(3):R47-R71.

125. Nettleship J, Jones R, Channer K, Jones T. Testosterone and coronary artery disease. Advances in the management of testosterone deficiency. 37: Karger Publishers. 2009;37:91-107.

126. Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al. Clinical features of COVID-19-related liver damage. Clinical Gastroenterology and Hepatology. 2020;18(7):1561-1566.

127. Mantovani A, Beatrice G, Dalbeni A. Coronavirus disease 2019 and prevalence of chronic liver disease: A meta‐analysis. Liver International. 2020;40(6):1316-1320.

128. Wang S, Han P, Xiao F. Manifestations of liver injury in 333 hospitalized patients with coronavirus disease 2019. Chin J Dig. 2020.

129. Bloom PP, Meyerowitz EA, Reinus Z, Daidone M, Gustafson J, Kim AY, et al. Liver Biochemistries in Hospitalized Patients With COVID‐19. Hepatology. 2020.

130. Zhang C, Shi L, Wang F-S. Liver injury in COVID-19: management and challenges. The lancet Gastroenterology & hepatology. 2020;5(5):428-30.

131. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. biorxiv. 2020. doi.org/10.1101/2020.02.03.931766.

132. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? The lancet Gastroenterology & hepatology. 2020;5(4):335-7.

133. Feng G, Zheng KI, Yan Q-Q, Rios RS, Targher G, Byrne CD, et al. COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. Journal of clinical and translational hepatology. 2020;8(1):18.

134. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology. 2020;158(6):1518-9.

135. Pirola CJ, Sookoian SC. COVID-19 and ACE2 in the liver and gastrointestinal tract: Putative biological explanations of sexual dimorphism. 2020;159(4):1620-1621.

136. Zhou Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of Gastrointestinal Symptoms in Patients With COVID-19. Gastroenterology. 2020;158(8):2294.

137. Bianco F, Ranieri A, Paterniti G, Pata F, Gallo G. Acute intestinal ischemia in a patient with COVID-19. Techniques in Coloproctology. 2020; 24:1217–1218.

138. Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging microbes & infections. 2020;9(1):386-9.

139. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature medicine. 2020;26(4):502-5.

140. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3.

141. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020. doi.org/10.1101/2020.01.30.927806.

142. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-81.

143. Leung WK, To K-f, Chan PK, Chan HL, Wu AK, Lee N, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125(4):1011-7.

144. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-21.

145. Earley ZM, Akhtar S, Green SJ, Naqib A, Khan O, Cannon AR, et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PloS one. 2015;10(7):e0129996.

146. Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, et al. Circadian disorganization alters intestinal microbiota. PloS one. 2014.

147. Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics. 2017;18:690-699.

148. Looft T, Allen HK. Collateral effects of antibiotics on mammalian gut microbiomes. Gut microbes. 2012;3(5):463-7.

149. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Frontiers in microbiology. 2016.

150. Dhar D, Mohanty A. Gut microbiota and Covid-19-possible link and implications. Virus Research. 2020.

151. Sierpiński R, Pinkas J, Jankowski M, Zgliczyński W, Wierzba W, Gujski M, et al. Gender differences in the frequency of gastrointestinal symptoms and olfactory or taste disorders among 1,942 non-hospitalized patients with COVID-19. Polish Archives of Internal Medicine. 2020;130(6):501-505.

152. Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244-274.

153. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney International. 2020;98(1):209-218.

154. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney international. 2020;97(5):829-838.

155. Jefferson JA, Nelson PJ, Najafian B, Shankland SJ. Podocyte disorders: core curriculum 2011. American Journal of Kidney Diseases. 2011;58(4):666-77.

156. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. MedRxiv. 2020.

157. Su H, Yang M, Wan C, Yi L-X, Tang F, Zhu H-Y, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney international. 2020;98(1):219-227.

158. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet. 2020;395(10229):1054-1062.

159. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195-1199.

160. Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T, et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97-105.

161. Jordan RE, Adab P, Cheng K. Covid-19: risk factors for severe disease and death. British Medical Journal Publishing Group; 2020.

162. Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality of COVID-19 patients in Wuhan, China. Clinical Microbiology and Infection. 2020;26(6):767-772.

163. Peleg Y, Kudose S, D’Agati V, Siddall E, Ahmad S, Nickolas T, et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney international reports. 2020;5:940-5.

164. Nichols B, Jog P, Lee JH, Blackler D, Wilmot M, D'agati V, et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney international. 2015;87(2):332-42.

165. Larsen C, Bourne T, Wilson J, Saqqa O, Sharshir M. Collapsing glomerulopathy in a patient with coronavirus disease 2019 (COVID-19). Kidney Int Rep. 2020;5(6):935-939.

166. Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney International. 2020;98(1): 228–231.

167. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. The Lancet Respiratory Medicine. 2020;8(7):738-742.

168. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nature Reviews Nephrology. 2020;16:308-310.

169. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. New England Journal of Medicine. 2020;382:e38(1)-e38(3).

170. Cobo G, Hecking M, Port FK, Exner I, Lindholm B, Stenvinkel P, et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clinical science. 2016;130(14):1147-63.

171. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biology of Sex Differences. 2020;11:29.

172. Hu X, Pan X, Zhou W, Gu X, Shen F, Yang B, et al. Clinical epidemiological analyses of overweight/obesity and abnormal liver function contributing to prolonged hospitalization in patients infected with COVID-19. International Journal of Obesity. 2020;44:1784-9.


Дополнительные файлы

1. 1664.7z
Тема
Тип Исследовательские инструменты
Скачать (140KB)    
Метаданные

Для цитирования:


Хаксари M., Сабэт Н., Солтани З., Башири Х. ПОЛ ПАЦИЕНТА ВЛИЯЕТ НА ОТВЕТ СИСТЕМ ОРГАНИЗМА И КЛИНИЧЕСКИЙ ИСХОД ПРИ COVID-19. Инфекция и иммунитет. 2020;. https://doi.org/10.15789/2220-7619-GRR-1664

For citation:


Khaksari M., Sabet N., Soltani Z., Bashiri Kh. Gender-Related Response of Body Systems in COVID-19 Affects Outcome. Russian Journal of Infection and Immunity. 2020;. https://doi.org/10.15789/2220-7619-GRR-1664

Просмотров: 16


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)