THE TOLL-LIKE RECEPTORS ROLE IN INFLAMMATORY DISEASES OF THE BRONCHOPULMONARY SYSTEM PATHOGENESIS

Cover Page


Cite item

Full Text

Abstract

The inflammatory bronchopulmonary diseases are relevant public health problem. The general characteristics of this diseases group are significant proportion of patients that does not react properly on ongoing antibiotic therapy. The reason may be various disorders of the immune system. It is known that the development of immune response to pathogen involves a complex interaction of cells and molecules of innate and adaptive immune systems. Currently dendritic cells are considered as a connecting link between innate and adaptive immunity. Toll-like receptors function and expression are intensively investigated in norm and in pathology last decade, which are the most important members of the family of signaling receptors and play an important role in the activation of mechanisms of innate immunity. Infection is one of the major factors that influence in the expression of the toll-like receptors. The level of expression directly correlates with the severity of the process. In some cases toll-like receptors allows as early markers of infection. Consider the role of the toll-like receptors in the development of normal immune response, coudn’t exclude the various defects in signal transmission systems and in the receptors structure in patients with inflammatory diseases. That is why defining the role of toll-like receptors in various diseases is advisable and in the future will allow to improve the effectiveness of the therapy. Nowadays have not generally accepted effective methods of the inflammatory bronchopulmonary diseases immunocorrection, there also remains the problem of prevention and therapy. In particular, discuss the use of immunomodulators, so called “therapeutic vaccines” that have the ability to stimulate the antigen-specific response.

About the authors

E. S. Korovkina

I. Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: eskorovkina@yandex.ru

PhD (Medicine), Senior Researcher, Laboratory of Vaccination and Immunotherapy of Allergic Diseases, Department of Allergology,

105064, Moscow, M. Kazionniy per., 5A

Russian Federation

S. V. Kazharova

I. Mechnikov Research Institute of Vaccines and Sera

Email: fake@neicon.ru

Junior Researcher, Laboratory of Vaccination and Immunotherapy of Allergic Diseases, Department of Allergology,

105064, Moscow, M. Kazionniy per., 5A

Russian Federation

References

  1. Ахматова Н.К., Киселевский М.В. Врожденный иммунитет: противоопухолевый и противоинфекционный. М.: Практическая медицина, 2008. 254 с. [Akhmatova N.K., Kiselevskii M.V. Vrozhdennyi immunitet: protivoopukholevyi i protivoinfektsionnyi [Innate immunity: anti-tumor and anti-infectious]. Moscow: Prakticheskaya meditsina, 2008, 254 p.]
  2. Егорова Н.Б., Курбатова Е.А. Иммунотерапевтическая концепция использования микробных антигенов при атопии и патологии, ассоциированной с условно-патогенной микрофлорой (на примере поликомпонентной вакцины Иммуновак-ВП-4) // Медицинская иммунология. 2008. Т. 10, № 1. С. 13–20. [Egorova N.B., Kurbatova E.A. An immunotherapeutic concept of microbal antigen application in atopy and disorders associated with facultative microflora, as exemplified by a polycomponent Immunovac VP4 vaccine. Meditsinskaya immunologiya = Medical Immunology (Russia), 2008, vol. 10, no. 1, pp. 13–20. doi: 10.15789/1563-0625-2008-1-13-20 (In Russ.)]
  3. Земсков А.М., Земскова В.А., Попов В.И., Караулов А.В., Конопля А.И. Иммунология: учебное пособие для врачей. Воронеж, 2013. 594 с. [Zemskov A.M., Zemskova V.A., Popov V.I., Karaulov A.V., Konoplya A.I. Immunologiya: uchebnoe posobie dlya vrachei [Immunology: a textbook for doctors]. Voronezh, 2013, 594 p.]
  4. Катунина О.Р. Функции Toll-подобных рецепторов как компонента врожденного иммунитета и их участие в патогенезе дерматозов различной этиологии // Вестник дерматологии и венерологии. 2011. № 2. С. 18–25. [Katunina O.R. Functions of Toll-like receptors as an inborn immunity component and their participation in the pathogenesis of dermatoses of different etiologies. Vestnik dermatologii i venerologii = Journal of Dermatology and Venereology, 2011, no. 2, pp. 18–25. (In Russ.)]
  5. Коровкина Е.С. Последствия внебольничных пневмоний и возможности их профилактики // Пульмонология. 2015. № 1. С. 101–104. [Korovkina E.S. The effects of community-acquired pneumonia and possibilities of their prevention. Pul’monologiya = Pulmonology, 2015, no. 1, pp. 101–104. (In Russ.)]
  6. Кубанов А.А., Абрамова Т.В. Распознающие рецепторы врожденного иммунитета (Toll-подобные рецепторы) в патогенезе заболеваний кожи // Цитокины и воспаление. 2015. Т. 14, № 1. С. 11–17. [Kubanov A.A., Abramova T.V. Recognition receptors of innate immunity (Toll-like receptor) in the pathogenesis of skin diseases. Tsitokiny i vospalenie = Cytokines and Inflammation, 2015, vol. 14, no. 1, pp. 11–17. (In Russ.)]
  7. Мавзютова Г.А., Фазлыева Р.М., Тюрина Е.Б., Хайруллина Р.М., Бикметова Н.Р. Особенности иммунных нарушений при внебольничных пневмониях // Медицинская иммунология. 2007. Т. 9, № 6. С. 605–612. [Mavziutova G.A., Fazlyeva R.M., Tiurina E.B., Khairullina R.M., Bikmetova N.R. Features of immune disturbances in community-acquired pneumonias. Meditsinskaya immunologiya = Medical Immunology (Russia), 2007, vol. 9, no. 6, pp. 605–612. doi: 10.15789/1563-0625-2007-6-605-612 (In Russ.)]
  8. Маркелова Е.В., Гельцер Б.И., Корявченкова И.В., Костюшко А.В. Состояние системы цитокинов при нозокомиальных пневмониях // Цитокины и воспаление. 2003. Т. 2, № 1. С. 14–19. [Markelova E.V., Geltser B.I., Koryavchencova I.V., Kostushko A.V. Cytokine system in nosocomial pneumonia patients. Tsitokiny i vospalenie = Cytokines and Inflammation, 2003, vol. 2, no. 1, pp. 14–19. (In Russ.)]
  9. Маркушин С.Г. Особенности врожденного иммунитета при вирусных инфекциях // Эпидемиология и вакцинопрофилактика. 2012. T. 1, № 62. С. 72–81. [Markushin S.G. Features of innate immunity in virus infections. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention, 2012, vol. 1, no. 62, pp. 72–81. (In Russ.)]
  10. Мухамадиева Л.Р., Мавзютова Г.А., Фазлыева Р.М., Бикметова Н.Р. Клинико-иммунологическая эффективность иммунофана и полиоксидония в комплексной терапии внебольничной пневмонии // Медицинская иммунология, 2009, Т. 11, № 1. C. 57–62. [Mukhamadieva L.R., Mavzyutova G.A., Fazlyeva R.M., Bikhmetova N.R. Clinical and immunological efficiency of imunofan and polyoxidonium in combined therapy of community-acquired pneumonia. Meditsinskaya immunologiya = Medical Immunology (Russia), 2009, vol. 11, no. 1, pp. 57–62. doi: 10.15789/1563-0625-2009-1-57-62 (In Russ.)]
  11. Романенко В.В., Сомова А.В., Ковтун О.В. Первые уроки масштабной программы вакцинопрофилактики пневмококковой инфекции в Свердловской области // Педиатрическая фармакология. 2014. Т. 11, № 1. С. 86–90. [Romanenko V.V., Somova A.V., Kovtun O.V. The first lessons of a wide-scale pneumococcal infection vaccinal program in the Sverdlovsk region. Pediatricheskaya farmakologiya = Pediatric Pharmacology, 2014, vol. 11, no. 1, pp. 86–90. (In Russ.)]
  12. Симбирцев А.С. Толл-белки: специфические рецепторы неспецифического иммунитета // Иммунология. 2005. № 6. С. 368–376. [Simbircev A.S. Toll proteins: specific receptors of non-specific immunity. Immunologiya = Immunology, 2005, no. 6, pp. 368–376. (In Russ.)]
  13. Толстопятова М.А., Буслаева Г.А., Козлов И.Г. Роль рецепторов врожденного иммунитета в развитии инфекционной патологии и новорожденных детей // Педиатрия. Журнал им. Г.Н. Сперанского. 2009. T. 87, № 1. C. 115–120. [Tolstopyatova M.A., Buslaeva G.A., Kozlov I.G. The role of receptors of innate immunity in development of infectious disease and newborn babies. Pediatriya. Zhurnal imeni G.N. Speranskogo = Pediatrics. Journal named after G.N. Speransky, 2009, vol. 87, no. 1, pp. 115–120. (In Russ.)]
  14. Ahrens P., Kattner E., Köhler B., Härtel C., Seidenberg J., Segerer H., Möller J., Göpel W. Mutation of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr. Res., 2004, vol. 55, pp. 652–656. doi: 10.1203/01.pdr.0000112100.61253.85
  15. Baral P., Batra S., Zemans R.L., Downey G.P., Jeyaseelan S. Divergent functions of Toll-like receptors during bacterial lung infections. Am. J. Respir. Crit. Care Med., 2014, vol. 190, no. 7, pp. 722–732. doi: 10.1164/rccm.201406-1101PP
  16. Berenson C.S., Kruzel R.L., Wrona C.T., Mammen M.J., Sethi S. Impaired innate COPD alveolar macrophage responses and Toll-like receptor-9 polymorphisms. PLoS One, 2015, vol. 10, no. 9, e:0134209. doi: 10.1371/journal.pone.0134209
  17. Bhan U., Lukacs N.W., Osterholzer J.J., Newstead M.W., Zeng X., Moore T.A., McMillan T.R., Krieg A.M., Akira S., Standiford T.J. TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells. J. Immunol., 2007, vol. 179, no. 6, pp. 3937–3946. doi: 10.4049/jimmunol.179.6.3937
  18. Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification — how, when and why? FEMS Microbiol. Rev., 2015, vol. 39, no. 2, pp. 246–261. doi: 10.1093/femsre/fuu006
  19. Franchimont D., Vermeire S., El Housni H., Pierik M., Van Steen K., Gustot T., Quertinmont E., Abramowicz M., Van Gossum A., Devière J., Rutgeerts P. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut, 2004, vol. 53, no. 7, pp. 978–992.
  20. Go H., Koh J., Kim H.S., Jeon Y.K., Chung D.H. Expression of toll-like receptor 2 and 4 is increased in the respiratory epithelial cells of chronic idiopathic interstitial pneumonia patients. Respir. Med., 2014, vol. 108, no. 5, pp. 783–792. doi: 10.1016/j.rmed.2013.12.007
  21. Guo S., Nighot M., Al-Sadi R., Alhmoud T., Nighot P., Ma T.Y. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J. Immunol., 2015, vol. 195, no. 10, pp. 4999–5010. doi: 10.4049/jimmunol.1402598
  22. Hahn W.O., Harju-Baker S., Erdman L.K., Krudsood S., Kain K.C., Wurfel M.M., Liles W.C. A common TLR1 polymorphism is associated with higher parasitaemia in a Southeast Asian population with Plasmodium falciparum malaria. Malar. J., 2016, vol. 15, no. 1, e:12. doi: 10.1186/s12936-015-1071-y
  23. Jiménez-Dalmaroni M.J., Gerswhin M.E., Adamopoulos I.E. The critical role of toll-like receptors — from microbial recognition to autoimmunity: a comprehensive review. Autoimmun. Rev., 2016, vol. 15, no. 1, e:12. doi: 10.1016/j.autrev.2015.08.009
  24. Kiechl S., Lorenz E., Reindl M., Wiedermann C.J., Oberhollenzer F., Bonora E., Willeit J., Schwartz D.A. TLR4 polymorphism and atherogenesis. N. Eng. J. Med., 2002, vol. 347, no. 3, pp. 185–192. doi: 10.1056/nejmoa012673
  25. Kokkinopoulos I., Jordan W.J., Ritter M.A. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol. Immunol., 2005, vol. 42, no. 8, pp. 957–968. doi: 10.1016/j.molimm.2004.09.037
  26. Kondo T., Kawai T., Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol., 2012, vol. 33, no. 9, pp. 449–458. doi: 10.1016/j.it.2012.05.002
  27. Kumar H., Kawai T., Akira S. Pathogen recognition in the innate immune response. Biochem. J., 2009, vol. 420, no. 1, pp. 1–16. doi: 10.1042/bj20090272
  28. Kumpf O., Giamarellos-Bourboulis E.J., Koch A., Hamann L., Mouktaroudi M., Oh D.Y., Latz E., Lorenz E., Schwartz D.A., Ferwerda B., Routsi C., Skalioti C., Kullberg B.J., Van der Meer J.W., Schlag P.M., Netea M.G., Zacharowski K., Schumann R.R. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts. Critic. Care, 2010, vol. 14, no. 3, e:R103. doi: 10.1186/cc9047
  29. Kutukculer N., Yeniay B.S., Aksu G., Berdeli A. Arg753Gln polymorphism of the human toll-like receptor-2 gene in сhildren with recurrent febrile infections. Biochem. Gen., 2007, vol. 45, no. 7–8, pp. 507–514. doi: 10.1007/s10528-007-9091-0
  30. Lorenz E., Mira J.P., Frees K.L., Schwartz D.A. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch. Int. Med., 2002, vol. 162, no. 9, pp. 1028–1032. doi: 10.1001/archinte.162.9.1028
  31. Lundberg K., Rydnert F., Greiff L., Lindstedt M. Human blood dendritic cell subsets exhibit discriminative pattern recognition receptor profiles. Immunol., 2014, vol. 142, no. 2, pp. 279–288. doi: 10.1111/imm.12252
  32. Marinelli C., Di Liddo R., Facci L., Bertalot T., Conconi M.T., Zusso M., Skaper S.D., Giusti P. Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J. Neuroinflam., 2015, vol. 12, no. 1, e:244. doi: 10.1186/s12974-015-0458-6
  33. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature, 2007, vol. 449, no. 7164, pp. 819–826. doi: 10.1038/nature06246
  34. Moore C.E., Segal S., Berendt A.R., Hill A.V.S., Day N.P.J. Lack of association between tlr2 polymorphism and susceptibilitity to severe disease caused by St. aureus. Clin. Diagn. Lab. Immunol., 2004, vol. 11, no. 6, pp. 1194–1197. doi: 10.1128/cdli.11.6.1194-1197.2004
  35. Morré S.A., Murillo L.S., Spaargaren J., Fennema H.S.A., Peña A.S. Role of TLR4 Asp299Gly polymorphism in susceptibility to Candida albicans infection. J. Infect. Dis., 2002, vol. 186, no. 9, pp. 1377–1379. doi: 10.1086/344328
  36. Morré S.A., Murillo L.S, Bruggeman C.A., Peña A.S. The role that the functional Asp 299Gly polymorphism in the toll-like receptors 4 gene plays in susceptibility to Chlamydia trachomatis-associated tubal infertility. J. Inf. Dis., 2003, vol. 187, no. 2, pp. 341–342. doi.org/10.1086/346044
  37. Picard C. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science, 2003, vol. 299, no. 5615, pp. 2076–2079. doi: 10.1126/science.1081902
  38. Plotz S.G. The interaction of humanperipheral blood eosinophils with bacterial lipipolysaccharide is CD14 dependent. Blood, 2001, vol. 97, no. 1, pp. 235–241. doi: 10.1016/j.vetimm.2005.05.008
  39. Raymond C.R., Wilkie B.N. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Vet. Immunol. Immunopath., 2005, vol. 107, no. 3, pp. 235–247. doi: 10.1016/j.vetimm.2005.05.008
  40. Read R.C., Pullin J., Gregory S., Borrow R., Kaczmarski E.B., Di Giovine F.S., Dower S.K., Cannings C., Wilson A.G. A functional polymorphism of TLR4 is not associated with likelihood or severity of meningococcal disease. J. Inf. Dis., 2001, vol. 184, no. 5, pp. 640–642. doi: 10.1086/322798
  41. Renn C.N., Sanchez D.J., Ochoa M.T., Legaspi A.J., Oh C.K., Liu P.T., Krutzik S.R., Sieling P.A., Cheng G., Modlin R.L. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J. Immunol., 2006, vol. 177, no. 1, pp. 298–305. doi: 10.4049/jimmunol.168.9.4701
  42. Sabroe I., Jones E.C., Usher L.R., Whyte M.K., Dower S.K. Toll-like receptor (TLR2) and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol., 2002, vol. 168, no. 9, pp. 4701–4710. doi: 10.4049/jimmunol.168.9.4701
  43. Sun J., Li N., Oh K.S., Dutta B., Vayttaden S.J., Lin B., Ebert T.S., De Nardo D., Davis J., Bagirzadeh R., Lounsbury N.W, Pasare C., Latz E., Hornung V., Fraser I.D. Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Sci. Sign., 2016, vol. 9, no. 409, e:ra3. doi: 10.1126/scisignal.aab2191
  44. Supajatura V., Ushio H., Nakao A., Okumura K., Ra C., Ogawa H. Protective roles of mast cells against enterobacterial infection are mediated by toll-like receptor 4. J. Immunol., 2001, vol. 167, no. 4, pp. 2250–2256. doi: 10.4049/jimmunol.167.4.2250
  45. Tabiasco J., Devêvre E., Rufer N., Salaun B., Cerottini J.-C., Speiser D., Romero P. Human effector CD8+T-lymphocytes express TLR3 as a functional coreceptor. J. Immunol., 2006, vol. 177, no. 12, pp. 8708–8713. doi: 10.4049/jimmunol.177.12.8708
  46. Tomlinson G., Chimalapati S., Pollard T., Lapp T., Cohen J., Camberlein E., Stafford S., Periselneris J., Aldridge C., Vollmer W., Picard C,. Casanova J.L., Noursadeghi M., Brown J. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J. Immunol., 2014, vol. 193, no. 7, pp. 3736–3745. doi: 10.4049/jimmunol.1401413
  47. Treml L.S., Carlesso G., Hoek K.L., Stadanlick J.E., Kambayashi T., Bram R.J., Cancro M.P., Khan W.N. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J. Immunol., 2007, vol. 178, no. 12, pp. 7531–7539. doi: 10.4049/jimmunol.178.12.7531
  48. WHO Media Center 2014. The top 10 causes of death. URL: http://www.who.int/mediacentre/factsheets/fs310/en
  49. Yasui M., Matsushima M., Omura A., Mori K., Ogasawara N., Kodera Y., Shiga M., Ito K., Kojima S., Kawabe T. The suppressive effect of quercetin on Toll-like receptor 7-mediated activation in alveolar macrophages. Pharmacology, 2015, vol. 96, no. 5–6, pp. 201–209. doi: 10.1159/000438993

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Korovkina E.S., Kazharova S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies