Preview

Инфекция и иммунитет

Расширенный поиск

Нейтрофил как «многофункциональное устройство» иммунной системы

https://doi.org/10.15789/2220-7619-2019-0-

Аннотация

За последние два - три десятилетия благодаря использованию новых технологий было значительно расширено представление о спектре функциональных возможностей нейтрофильных гранулоцитов. Детально изучен их эффекторный потенциал в отношении инфекционных агентов, включающий фагоцитоз, продукцию активных форм кислорода и азота, дегрануляцию с высвобождением многочисленных ферментов и антимикробных пептидов, образование внеклеточных ловушек. При этом установлено, что многие их тех факторов, которые нейтрофилы используют для прямого уничтожения патогенов, оказывают регулирующее влияние в отношении других клеток иммунной системы и самих нейтрофилов. Кроме того, при активации нейтрофилы способны синтезировать ряд биологически активных молекул de novo. Реализация иммунорегуляторного влияния нейтрофилов в отношении макрофагов, дендритных клеток, Т-лимфоцитов и В-лимфоцитов может происходить как путём прямого межклеточного контакта, так и опосредовано через продукцию цитокинов и других биологически активных медиаторов. Амбивалентное, как хелперное, так и супрессорное, воздействие нейтрофилов на клетки иммунной системы свидетельствует об их важной роли как в условиях гомеостаза, так и при различных видах патологии, в частности при развитии злокачественных опухолей. Способность нейтрофильных гранулоцитов проявлять разнообразные, порой даже антагонистические варианты воздействия на иммунные клетки и клетки других тканей, свидетельствует об их функциональной пластичности и, вероятно, гетерогенности. При этом вектор активности, проявляемой нейтрофилами, во многом зависит от того микроокружения, в котором они оказываются, выходя из периферического кровотока. Традиционно считаясь индукторами воспалительной реакции, нейтрофилы демонстрируют способность параллельно включать механизмы, способствующие ограничению и разрешению воспаления. Благодаря интравитальной микроскопии в моделях на животных установлена способность нейтрофилов возвращаться в кровоток после выхода во внесосудистое пространство, что бросает вызов классической концепции однонаправленности миграции нейтрофилов из сосудистого русла в ткани. Также получены доказательства, что в определённых условиях нейтрофилы могут проявлять себя как антиген-презентирующие клетки по отношению к Т-лимфоцитам и рекрутироваться из сайтов воспаления в дренирующие лимфатические узлы. И хотя многие данные получены в условиях in vitro или в моделях на животных и поэтому требуют дополнительного изучения и подтверждения, однозначно можно констатировать, что влияние нейтрофилов не ограничивается рамками системы врожденного иммунитета.

Об авторах

Илья Ильич Долгушин
ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЮУГМУ Минздрава России), Челябинск
д.м.н., профессор, президент федерального государственного бюджетного образовательного учреждения высшего образования «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЮУГМУ Минздрава России), заведующий кафедрой Микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики ФГБОУ ВО ЮУГМУ Минздрава России


Е А Мезенцева
ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЮУГМУ Минздрава России), Челябинск
к.м.н., доцент кафедры Микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики ФГБОУ ВО ЮУГМУ Минздрава России


Альбина Юрьевна Савочкина
ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ЮУГМУ Минздрава России), Челябинск
Россия
д.м.н., доцент, профессор кафедры Микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики ФГБОУ ВО ЮУГМУ Минздрава России


Е К Кузнецова
ФГБОУ ВО «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ОрГМУ Минздрава России)
к.м.н., ассистент кафедры кожных и венерических болезней федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации (ФГБОУ ВО ОрГМУ Минздрава России)


Список литературы

1. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН. 2009. 208 с. Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neytrofil'nyye vnekletochnyye lovushki i metody otsenki funktsional'nogo statusa neytrofilov. [Neutrophil extracellular traps and methods for assessing the functional status of neutrophils]. M.: Publishing house RAMS. 2009. 208 p.

2. Куликов В.А., Гребенников И.Н. Резольвины, протектины и марезины: новые медиаторы воспаления // Вестник Витебского государственного медицинского университета. 2012. Т. 11, № 1. С. 25-30. Kulikov V.A., Grebennikov I.N. Resolvins, protectis and maresins as new medicators of an inflammation. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta = Vestnik of Vitebsk State Medical University, 2012, vol. 11, no. 1, pp. 25-30. https://elibrary.ru/download/elibrary_17675922_80125405.pdf

3. http://vestnik.vsmu.by/archive/2012/vestvgmu-2012-1.html

4. Кунц Т.А., Михайлова Е.С., Маринкин И.О., Вараксин Н.А., Аутеншлюс А.И. Сравнительная оценка продукции цитокинов иммунокомпетентными клетками крови и опухоли в различных возрастных группах больных инвазивным протоковым раком молочной железы // Медицинская иммунология. 2017. Т. 19, № 5. С. 567-576. Kunts T.A., Mikhaylova E.S., Marinkin I.O., Varaksin N.A., Autenshlyus A.I. Comparative analysis of cytokine production by blood immunocompetent cells and tumor in different age groups of patients with invasive ductal carcinoma. Meditsinskaya immunologiya = Medical Immunology, 2017, vol. 19, no. 5, pp. 567–576. https://www.mimmun.ru/mimmun/article/view/1358/972

5. Недоспасов С.А. Врожденный иммунитет и его значение для биологии и медицины // Вестник Российской академии наук. 2013. Т. 83, № 9. С. 771-783. Nedospasov S.A. Innate immunity and its importance for biology and medicine. Vestnik Rossiyskoy akademii nauk = Vestnik of the Russian Academy of Sciences, 2013, vol. 83, no. 9, pp. 771-783. https://elibrary.ru/item.asp?id=20193506

6. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. 2015. Т. 36, № 4. С. 257-265. Nesterova I.V., Kolesnikova N.V., Chudilova G.A., Lomtatidze L.V., Kovaleva S.V., Evglevsky A.A. Neutrophilic granulocytes: a new look at “old players” on the immunological field. Immunologiya = Immunology, 2015, vol. 36, no. 4, pp. 257–265. https://elibrary.ru/item.asp?id=24324535

7. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. C. 219–230. Nesterova I.V., Kolesnikova N.V., Chudilova G.A., Lomtatidze L.V., Kovaleva S.V., Evglevsky A.A., Nguyen T.D.L. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 1. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2017, vol. 7, no. 3, pp. 219–230. https://www.iimmun.ru/iimm/article/view/554

8. doi: 10.15789/2220-7619-2017-3-219-230

9. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. C. 7–18. Nesterova I.V., Kolesnikova N.V., Chudilova G.A., Lomtatidze L.V., Kovaleva S.V., Evglevsky A.A., Nguyen T.D.L. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 2. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2018, vol. 8, no. 1, pp. 7–18. https://www.iimmun.ru/iimm/article/view/666

10. doi: 10.15789/2220-7619-2018-1-7-18

11. Пономарев А.В. Миелоидные супрессорные клетки: общая характеристика // Иммунология. 2016. Т. 37, № 1. С. 47-50. Ponomarev A.V. Myeloid supressors cells: general characteristics. Immunologija = Immunology, 2016, vol. 37, no. 1, pp. 47–50. https://elibrary.ru/item.asp?id=25672542

12. Потапнёв М.П. Молекулярные аспекты распознавания в иммунном и воспалительном ответе // Здравоохранение (Минск). 2014. №5. С. 18-27. Potapnev M.P. Molecular aspects of recognizing in immune and inflammatory responses. Zdravookhraneniye (Minsk) = Public Health (Minsk), 2014, no. 5, pp. 18-27. http://www.zdrav.by/pdf/2014/Zdrav5.pdf

13. https://elibrary.ru/item.asp?id=21634320

14. Сахаров В.Н., Литвицкий П.Ф. Роль различных фенотипов макрофагов в развитии заболеваний человека // Вестник Российской академии медицинских наук. 2015. Т. 70, № 1. С. 26-31. Sakharov V.N., Litvitsky P.F. Roles of different macrophage phenotypes in the pathogenesis of some human diseases. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk — Annals of the Russian Academy of Medical Sciences, 2015, vol. 70, no. 1, pp. 26–31. https://elibrary.ru/item.asp?id=23068413

15. Сенников С.В., Куликова Е.В., Кнауэр Н.Ю., Хантакова Ю.Н. Молекулярно-клеточные механизмы, опосредуемые дендритными клетками, участвующие в индукции толерантности // Медицинская иммунология. 2017. Т. 19, № 4. С. 359-374. Sennikov S.V., Kulikova E.V., Knauer N.Yu., Khantakova Yu.N. Molecular and cellular mechanisms mediated by dendritic cells involved in the induction of tolerance. Meditsinskaya immunologiya = Medical Immunology, 2017, vol. 19, no. 4, pp. 359–374. https://www.mimmun.ru/mimmun/article/view/1308

16. Талаев В.Ю., Плеханова М.В., Матвеичев А.В. Экспериментальные модели, пригодные для оценки влияния компонентом новых разрабатываемых вакцин на дифференцировку дендритных клеток // Журнал МедиАль. 2014. №2 (12). С. 135-153. Talayev V.Yu., Plechanova M.V., Matveichev A.V. In vitro models for investigation of vaccine component action upon dendritc cell maturation. Zhurnal Medial' = Magazine MediAl, 2014, no. 2 (12), pp. 135-153. http://www.medial-journal.ru/ru/journal/issue-15/article-118.html?

17. Хаитов P.M., Пащенков М.В., Пинегин Б.В. Роль паттерн-распознающих рецепторов во врождённом и адаптивном иммунитете // Иммунология. 2009. Т. 30, № 1. С. 66-76. Khaitov R.M., Pashchenkov M.V., Pinegin B.V. The role of pattern-recognizing receptors in congenital and adaptive immunity. Immunologiya = Immunology, 2009, vol. 30, no.1, pp. 66–76. https://elibrary.ru/item.asp?id=12000777

18. Abadie V., Badell E., Douillard P., Ensergueix D., Leenen P.J., Tanguy M., Fiette L., Saeland S., Gicquel B., Winter N. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood, 2005, vol. 106, iss. 5, pp. 1843-1850. - http://www.bloodjournal.org/content/106/5/1843?sso-checked=true

19. Aldinucci D., Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediators of Inflammation, 2014, vol. 2014, article ID 292376, 12 pages. - https://www.hindawi.com/journals/mi/2014/292376/

20. doi: 10.1155/2014/292376

21. Anderson R., Tintinger G.R., Feldman C. Inflammation and cancer: the role of the human neutrophil. South Africa Journal of Science, 2014, vol. 110, no. 1/2, 6 pages.

22. - http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532014000100010

23. Andzinski L., Kasnitz N., Stahnke S., Wu C.F., Gereke M., von Kockritz-Blickwede M., Schilling B., Brandau S., Weiss S., Jablonska J. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. International Journal of Cancer, 2016, vol. 138, iss. 8, pp. 1982–1993. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.29945 doi: 10.1002/ijc.29945

24. Avondt K.V., Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. European Journal of Clinical Investigation, 2018, e12919. - https://doi.org/10.1111/eci.12919

25. Bank U., Reinhold D., Schneemilch C., Kunz D., Synowitz H.J., Ansorge S. Selective proteolytic cleavage of IL-2 receptor and IL-6 receptor ligand binding chains by neutrophil-derived serine proteases at foci of inflammation. Journal of Interferon and Cytokine Research, 1999, vol. 19, iss. 11, pp. 1277–1287. - https://www.liebertpub.com/doi/abs/10.1089/107999099312957

26. Bankey P.E., Banerjee S., Zucchiatti A., De M., Sleem R.W., Lin C.F., Miller-Graziano C.L., De A.K. Cytokine induced expression of programmed death ligands in human neutrophils. Immunology Letters, 2010, vol. 129, iss. 2, pp. 100–107. - https://www.sciencedirect.com/science/article/abs/pii/S0165247810000362

27. doi: 10.1016/j.imlet.2010.01.006

28. Barrientos L., Bignon A., Gueguen C., de Chaisemartin L., Gorges R., Sandré C., Mascarell L., Balabanian K., Kerdine-Römer S., Pallardy M., Marin-Esteban V., Chollet-Martin S. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells. The Journal of Immunology, 2014, vol. 193, iss. 11, pp. 5689-5698. - http://www.jimmunol.org/content/193/11/5689

29. doi: 10.4049/jimmunol.1400586.

30. Basil M.C., Levy B.D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nature Reviews Immunology, 2016, vol. 16, iss. 1, pp. 51–67. - https://www.nature.com/articles/nri.2015.4

31. doi: 10.1038/nri.2015.4

32. Beauvillain C., Cunin P., Doni A., Scotet M., Jaillon S., Loiry M.L., Magistrelli G., Masternak K., Chevailler A., Delneste Y., Jeannin P. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood, 2011, vol. 117, iss. 4, pp. 1196–1204. - http://www.bloodjournal.org/content/117/4/1196?sso-checked=true

33. doi: 10.1182/blood-2009-11-254490.

34. Bekes E.M., Schweighofer B., Kupriyanova T.A., Zajac E., Ardi V.C., Quigley J.P., Deryugina E.I. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. The American Journal of Pathology, 2011, vol. 179, iss. 3, pp.1455–1470. - https://ajp.amjpathol.org/article/S0002-9440(11)00530-X/fulltext

35. doi: 10.1016/j.ajpath.2011.05.031.

36. Bennouna S., Denkers E.Y. Microbial antigen triggers rapid mobilization of TNF-α to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-α production. The Journal of Immunology, 2005, vol. 174, iss. 8, pp. 4845–4851. - http://www.jimmunol.org/content/174/8/4845

37. Bennouna S., Bliss S.K., Curiel T.J., Denkers E.Y. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. The Journal of Immunology, 2003, vol. 171, iss. 11, pp. 6052-6058. - http://www.jimmunol.org/content/171/11/6052

38. Berger-Achituv S., Brinkmann V., Abu Abed U., Kühn L.I., Ben-Ezra J., Elhasid R., Zychlinsky A. A proposed role for neutrophil extracellular traps in cancer immunoediting. Frontiers in Immunology, 2013, vol. 4: 48. - https://www.frontiersin.org/articles/10.3389/fimmu.2013.00048/full

39. doi: 10.3389/fimmu.2013.00048.

40. Beyer M., Schultze J.L. Regulatory T cells: major players in the tumor microenvironment. Current Pharmaceutical Design, 2009, vol. 15, iss. 16, pp. 1879-1892. - http://www.eurekaselect.com/69389/article

41. Blomgran R., Desvignes L., Briken V., Ernst J.D. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host and Microbe, 2012, vol. 11, iss. 1, pp. 81–90. - https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(11)00404-5?_returnURL

42. doi: 10.1016/j.chom.2011.11.012

43. Blomgran R., Ernst J.D. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. The Journal of Immunology, 2011, vol. 186, iss. 12, pp. 7110–7119. - http://www.jimmunol.org/content/186/12/7110

44. doi: 10.4049/jimmunol.1100001

45. Bosurgi L., Cao Y.G., Cabeza-Cabrerizo M., Tucci A., Hughes L.D., Kong Y., Weinstein J.S., Licona-Limon P., Schmid E.T., Pelorosso F., Gagliani N., Craft J.E., Flavell R.A., Ghosh S., Rothlin C.V. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science, 2017, vol. 356, iss. 6342, pp. 1072–1076. - http://science.sciencemag.org/content/356/6342/1072

46. doi:10.1126/science.aai8132.

47. Bronte V., Brandau S., Chen S.H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature communications, 2016, vol. 7: 12150. - https://www.nature.com/articles/ncomms12150

48. doi: 10.1038/ncomms12150

49. Buckley C.D., Ross E.A., McGettrick H.M., Osborne C.E., Haworth O., Schmutz C., Stone P.C., Salmon M., Matharu N.M., Vohra R.K., Nash G.B., Rainger G.E. Identification of a phenotypically and functionally distinct population of longlived neutrophils in a model of reverse endothelial migration. Journal of Leukocyte Biology, 2006, vol. 79, iss. 2, pp. 303–311. - https://jlb.onlinelibrary.wiley.com/doi/abs/10.1189/jlb.0905496

50. Candido J., Hagemann T. Cancer-related inflammation. Journal of Clinical Immunology, 2013, vol. 33, supplement 1, pp. 79-84. - https://link.springer.com/article/10.1007%2Fs10875-012-9847-0

51. doi: 10.1007/s10875-012-9847-0

52. Cerutti A., Cols M., Puga I. Marginal zone B cells: virtues of innate-like antibody producing lymphocytes. Nature Reviews Immunology, 2013, vol. 13, iss. 2, pp. 118-132. - https://www.nature.com/articles/nri3383

53. doi: 10.1038/nri3383

54. Charmoy M., Brunner-Agten S., Aebischer D., Auderset F., Launois P., Milon G., Proudfoot A.E., Tacchini-Cottier F. Neutrophil derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathogens, 2010, vol. 6, iss. 2:e1000755. - http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000755

55. doi: 10.1371/journal.ppat.1000755

56. Chertov O., Ueda H., Xu L.L., Tani K., Murphy W.J., Wang J.M., Howard O.M.Z., Sayers T.J., Oppenheim J.J. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. Journal of Experimental Medicine, 1997, vol. 186, iss. 5, pp. 739–747. - http://jem.rupress.org/content/186/5/739.long

57. Chopin M., Allan R.S., Belz G.T. Transcriptional regulation of dendritic cell diversity. Frontiers in Immunology, 2012, vol. 3: 26. - https://www.frontiersin.org/articles/10.3389/fimmu.2012.00026/full

58. doi: 10.3389/ fimmu.2012.00026

59. Christoffersson G., Phillipson M. The neutrophil: one cell on many missions or many cells with different agendas? Cell and Tissue Research, 2018, vol. 371, iss. 3, pp. 415–423. - https://link.springer.com/article/10.1007%2Fs00441-017-2780-z

60. Chtanova T., Schaeffer M., Han S.J., van Dooren G.G., Nollmann M., Herzmark P., Chan S.W., Satija H., Camfield K., Aaron H., Striepen B., Robey E.A. Dynamics of neutrophil migration in lymph nodes during infection. Immunity, 2008, vol. 29, iss. 3, pp. 487–496. - https://www.cell.com/immunity/fulltext/S1074-7613(08)00364-6?_returnURL

61. doi: 10.1016/j.immuni.2008.07.012

62. Clayton A.R., Prue R.L., Harper L., Drayson M.T., Savage C.O. Dendritic cell uptake of human apoptotic and necrotic neutrophils inhibits CD40, CD80, and CD86 expression and reduces allogeneic T cell responses: relevance to systemic vasculitis. Arthritis and Rheumatology, 2003, vol. 48, iss. 8, pp. 2362-2374. - https://onlinelibrary.wiley.com/doi/abs/10.1002/art.11130

63. Clynes R.A., Towers T.L., Presta L.G., Ravetch J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Medicine, 2000, vol. 6, iss. 4, pp. 443–446. - https://www.nature.com/articles/nm0400_443

64. Collin M., McGovern N., Haniffa M. Human dendritic cell subsets. Immunology, 2013, vol. 140, iss. 1, pp. 22-30. - https://onlinelibrary.wiley.com/doi/abs/10.1111/imm.12117

65. doi: 10.1111/imm.12117

66. Colom B., Bodkin J.V., Beyrau M., Woodfin A., Ody C., Rourke C., Chavakis T., Brohi K., Imhof B.A., Nourshargh S. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity, 2015, vol. 42, iss. 6, pp. 1075–1086. - https://www.cell.com/immunity/fulltext/S1074-7613(15)00207-1?_returnURL

67. doi: 10.1016/j.immuni.2015.05.010

68. Condamine T., Dominguez G.A., Youn J.I., Kossenkov A.V., Mony S., Alicea-Torres K., Tcyganov E., Hashimoto A., Nefedova Y., Lin C., Partlova S., Garfall A., Vogl D.T., Xu X., Knight S.C., Malietzis G., Lee G.H., Eruslanov E., Albelda S.M., Wang X., Mehta J.L., Bewtra M., Rustgi A., Hockstein N., Witt R., Masters G., Nam B., Smirnov D., Sepulveda M.A., Gabrilovich D.I. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Science Immunology, 2016, vol. 1, iss. 2, pp. aaf8943. - http://immunology.sciencemag.org/content/1/2/aaf8943

69. doi: 10.1126/sciimmunol.aaf8943

70. Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cellular and Molecular Life Sciences, 2014, vol. 71, iss. 21, pp. 4179–4194. - https://link.springer.com/article/10.1007%2Fs00018-014-1683-3

71. doi: 10.1007/s00018-014-1683-3

72. Cools-Lartigue J., Spicer J., McDonald B., Gowing S., Chow S., Giannias B., Bourdeau F., Kubes P., Ferri L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. The Journal of Clinical Investigation, 2013, vol. 123, iss. 8, pp. 3446-3458. - https://www.jci.org/articles/view/67484

73. doi: 10.1172/JCI67484

74. Cross A., Bucknall R.C., Cassatella M.A., Edwards S.W., Moots R.J. Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis and Rheumatology, 2003, vol. 48, iss. 10, pp. 2796-2806. - https://onlinelibrary.wiley.com/doi/abs/10.1002/art.11253

75. Culter C.W., Jotwani R. Dendritic cells at the oral mucosal interface. Journal of Dental Research, 2006, vol. 85, iss. 8, pp. 678-689. - http://journals.sagepub.com/doi/abs/10.1177/154405910608500801?journalCode=jdrb

76. Dallegri F., Ottonello L., Ballestrero A., Dapino P., Ferrando F., Patrone F., Sacchetti C. Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation, 1991, vol. 15, iss. 1, pp. 15–30. - https://link.springer.com/article/10.1007/BF00917906

77. Dalli J., Serhan C.N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood, 2012, vol. 120, iss. 15, pp. e60-e72. - http://www.bloodjournal.org/content/120/15/e60?sso-checked=true

78. doi: 10.1182/blood-2012-04-423525.

79. De Filippo K., Henderson R.B., Laschinger M., Hogg N. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. The Journal of Immunology, 2008, vol. 180, iss. 6, pp. 4308-4315. - http://www.jimmunol.org/content/180/6/4308

80. De Kleijn S., Langereis J.D., Leentjens J., Kox M., Netea M.G., Koenderman L., Ferwerda G., Pickkers P., Hermans P.W. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS ONE, 2013, vol. 8, iss. 8:e72249. - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072249

81. doi: 10.1371/journal.pone.0072249.

82. De Lorenzo B.H., Godoy L.C., Novaes e Brito R.R., Pagano R.L., Amorim-Dias M.A., Grosso D.M., Lopes J.D., MarianoM. Macrophage suppression following phagocytosis of apoptotic neutrophils is mediated by the S100A9 calcium-binding protein. Immunobiology, 2010, vol. 215, iss. 5, pp. 341–347. - https://www.sciencedirect.com/science/article/pii/S0171298509000849?via%3Dihub

83. doi: 10.1016/j.imbio.2009.05.013.

84. Deryugina E.I., Zajac E., Juncker-Jensen A., Kupriyanova T.A., Welter L., Quigley J.P. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 2014, vol. 16, iss. 10, pp. 771–788. - https://www.neoplasia.com/article/S1476-5586(14)00119-5/fulltext

85. doi: 10.1016/j.neo.2014.08.013.

86. Doherty T.M., Kastelein R., Menon S., Andrade S., Coffman R.L. Modulation of murine macrophage function by IL-13. The Journal of Immunology, 1993, vol. 151, iss. 12, pp. 7151–7160. - http://www.jimmunol.org/content/151/12/7151.long

87. Doyle A.G., Herbein G., Montaner L.J., Minty A.J., Caput D., Ferrara P, Gordon S. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. European Jounal of Immunology, 1994, vol. 24, iss. 6, pp. 1441–1445. - https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.1830240630

88. Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 1986, vol. 315, pp. 1650–1659. - https://www.nejm.org/doi/full/10.1056/NEJM198612253152606

89. Eken C., Gasser O., Zenhaeusern G., Oehri I., Hess C., Schifferli J.A. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. The Journal of Immunology, 2008, vol. 180, iss. 2, pp. 817–824. - http://www.jimmunol.org/content/180/2/817

90. Erler J.T., Bennewith K.L., Cox T.R., Lang G., Bird D., Koong A., Le Q.T., Giaccia A.J. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009, vol. 15, iss. 1, pp. 35–44. - https://linkinghub.elsevier.com/retrieve/pii/S1535610808003784

91. doi: 10.1016/j.ccr.2008.11.012.

92. Erpenbeck L., Schön M.P. Neutrophil extracellular traps: protagonists of cancer progression? Oncogene, 2017, vol. 36, iss. 18, pp. 2483-2490. - https://www.nature.com/articles/onc2016406

93. doi: 10.1038/onc.2016.406.

94. Eruslanov E.B., Bhojnagarwala P.S., Quatromoni J.G., Stephen T.L., Ranganathan A., Deshpande C., Akimova T., Vachani A., Litzky L., Hancock W.W., Conejo-Garcia J.R., Feldman M., Albelda S.M., Singhal S. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. The Journal of Clinical Investigation, 2014, vol. 124, iss. 12, pp. 5466-5480. - https://www.jci.org/articles/view/77053

95. doi: 10.1172/JCI77053.

96. Eruslanov E.B., Singhal S., Albelda S.M. Mouse versus human neutrophils in cancer: a major knowledge gap. Trends in Cancer, 2017, vol. 3, iss. 2, pp. 149-160. - https://www.cell.com/trends/cancer/fulltext/S2405-8033(16)30210-2?_returnURL

97. doi: 10.1016/j.trecan.2016.12.006.

98. Escors D., Kochan G. Myeloid-derived suppressor cells and their “inconvenient” plasticity. Journal of Immunological Sciences, 2018, vol. 2, iss. 2, pp. 42-47. - http://www.immunologyresearchjournal.com/articles/myeloidderived-suppressor-cells-and-their-inconvenient-plasticity.html

99. Ethuin F., Gerard B., Benna J.E., Boutten A., Gougereot-Pocidalo M.A., Jacob L., Chollet-Martin S. Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Laboratory Investigation, 2004, vol. 84, iss. 10, pp. 1363–1371. - https://www.nature.com/articles/3700148

100. Fadok V.A., Bratton D.L., Konowal A., Freed P.W., Westcott J.Y., Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. The Journal of Clinical Investigation, 1998, vol. 101, no. 4, pp. 890–898. - https://www.jci.org/articles/view/1112

101. Fanger N.A., Liu C., Guyre P.M., Wardwell K., O'Neil J., Guo T.L., Christian T.P., Mudzinski S.P., Gosselin E.J. Activation of human T cells by major histocompatability complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid. Blood, 1997, vol. 89, iss. 11, pp. 4128-4135. - http://www.bloodjournal.org/content/89/11/4128.long?sso-checked=true

102. Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. The Journal of Immunology, 2013, vol. 191, iss. 5, pp. 2647-2656. http://www.jimmunol.org/content/191/5/2647

103. doi: 10.4049/jimmunol.1300436.

104. Feldmeyer N., Wabnitz G., Leicht S., Luckner-Minden C., Schiller M., Franz T., Conradi R., Kropf P., Müller I., Ho A.D., Samstag Y., Munder M. Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. International Immunology, 2012, vol. 24, iss. 5, pp. 303–313. - https://academic.oup.com/intimm/article/24/5/303/684475

105. doi: 10.1093/intimm/dxs004.

106. Fletcher M., Ramirez M.E., Sierra R.A., Raber P., Thevenot P., Al-Khami A.A., Sanchez-Pino D., Hernandez C., Wyczechowska D.D., Ochoa A.C., Rodriguez P.C. L-arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Research, 2015, vol. 75, iss. 2, pp. 275–283. - http://cancerres.aacrjournals.org/content/75/2/275

107. doi: 10.1158/0008-5472.CAN-14-1491.

108. Fridlender Z.G., Albelda S.M. Tumor-associated neutrophils: friend or foe? Carcinogenesis, 2012, vol. 33, iss. 5, pp. 949-955. - https://academic.oup.com/carcin/article/33/5/949/2463833

109. doi: 10.1093/carcin/bgs123.

110. Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, vol. 16, iss. 3, pp. 183–194. - https://www.cell.com/cancer-cell/fulltext/S1535-6108(09)00215-3

111. doi: 10.1016/j.ccr.2009.06.017.

112. Gabrilovich D. I., Bronte V., Chen S.H., Colombo M. P., Ochoa A., Ostrand-Rosenberg S., Schreiber H. The terminology issue for myeloid-derived suppressor cells. Cancer Research, 2007, vol. 67, iss. 1, pp. 425–426. - http://cancerres.aacrjournals.org/content/67/1/425

113. Gabrilovich D. I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009, vol. 9, iss. 3, pp. 162–174. - https://www.nature.com/articles/nri2506

114. doi: 10.1038/nri2506.

115. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z., Punaro M., Baisch J., Guiducci C., Coffman R.L., Barrat F.J., Banchereau J., Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Science Translational Medicine, 2011, vol. 3, iss. 73, pp. 73ra20. - http://stm.sciencemag.org/content/3/73/73ra20

116. doi: 10.1126/scitranslmed.3001201.

117. Gasser O., Schifferli J.A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood, 2004, vol. 104, iss. 8, pp. 2543–2548. - http://www.bloodjournal.org/content/104/8/2543?sso-checked=true

118. Gaudry M., Brégerie O., Andrieu V., El Benna J., Pocidalo M.A., Hakim J. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood, 1997, vol. 90, iss. 10, pp. 4153–4161. - http://www.bloodjournal.org/content/90/10/4153.long

119. Gautam N., Olofsson A.M., Herwald H., Iversen L.F., Lundgren-Akerlund E., Hedqvist P., Arfors K.E., Flodgaard H., Lindbom L. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nature Medicine, 2001, vol. 7, pp. 1123–1127. - https://www.nature.com/articles/nm1001-1123

120. Gershkovitz M., Caspi Y., Fainsod-Levi T., Katz B., Michaeli J., Khawaled S., Lev S., Polyansky L., Shaul M.E., Sionov R.V., Cohen-Daniel L., Aqeilan R.I., Shaul Y.D., Mori Y., Karni R., Fridlender Z.G., Binshtok A.M., Granot Z. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Research, 2018, vol. 78, iss. 10, pp. 2680–2690. - http://cancerres.aacrjournals.org/content/78/10/2680

121. doi: 10.1158/0008-5472.CAN-17-3614.

122. Gestermann N., Di Domizio J., Lande R., Demaria O., Frasca L., Feldmeyer L., Di Lucca J., Gilliet M. Netting neutrophils activate autoreactive B cells in lupus. The Journal of Immunology, 2018, vol. 200, iss. 10, pp. 3364-3371. - http://www.jimmunol.org/content/200/10/3364

123. doi: 10.4049/jimmunol.1700778.

124. Gosselin E.J., Wardwell K., Rigby W.F., Guyre P.M. Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. The Journal of Immunology, 1993, vol. 151, iss. 3, pp. 1482-1490. - http://www.jimmunol.org/content/151/3/1482.long

125. Granot Z., Henke E., Comen E.A., King T.A., Norton L., Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 2011, vol. 20, iss. 3, pp. 300-314. - https://www.cell.com/cancer-cell/fulltext/S1535-6108(11)00309-6

126. doi: 10.1016/j.ccr.2011.08.012.

127. Grigg J.M., Savill J.S., Sarraf C., Haslett C., Silverman M. Neutrophil apoptosis and clearance from neonatal lungs. The Lancet, 1991, vol. 338, no. 8769, 720–722. - https://www.thelancet.com/journals/lancet/article/PII0140-6736(91)91443-X/abstract

128. Grohmann U., Bronte V. Control of immune response by amino acid metabolism. Immunological Reviews, 2010, vol. 236, iss. 1, pp. 236-243. - https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-065X.2010.00915.x

129. doi: 10.1111/j.1600-065X.2010.00915.x.

130. Grosse-Steffen T., Giese T., Giese N., Longerich T., Schirmacher P., Hänsch G.M., Gaida M.M. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clinical and Developmental Immunology, 2012, vol. 2012, article ID 720768, 12 pages. - https://www.hindawi.com/journals/jir/2012/720768/

131. doi: 10.1155/2012/720768.

132. Halverson T.W., Wilton M., Poon K.K., Petri B., Lewenza S. DNA is an antimicrobial component of neutrophil extracellular traps. PLoS Pathogens, 2015, vol. 11, iss. 1:e1004593. - http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004593

133. doi: 10.1371/journal.ppat.1004593.

134. Hamilton T.A., Zhao C., Pavicic P.G. Jr, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology, 2014, vol. 5:554. - https://www.frontiersin.org/articles/10.3389/fimmu.2014.00554/full

135. doi: 10.3389/fimmu.2014.00554.

136. Hampton H.R., Chtanova T. The lymph node neutrophil. Seminars in Immunology, 2016, vol. 28, iss. 2, pp. 129-136. - https://www.sciencedirect.com/science/article/pii/S1044532316000154?via%3Dihub

137. doi: 10.1016/j.smim.2016.03.008.

138. Hampton H.R., Bailey J., Tomura M., Brink R., Chtanova T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nature Communications, 2015, vol. 6, article number: 7139. - https://www.nature.com/articles/ncomms8139

139. doi: 10.1038/ncomms8139.

140. Hamza B., Wong E., Patel S., Cho H., Martel J., Irimia D. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integrative Biology, 2014, vol. 6, iss. 2, pp. 175-183. - http://pubs.rsc.org/en/Content/ArticleLanding/2014/IB/C3IB40175H#!divAbstract

141. doi: 10.1039/c3ib40175h.

142. Hänsch G.M., Radsak M., Wagner C., Reis B., Koch A., Breitbart A., Andrassy K. Expression of major histocompatibility class II antigens on polymorphonuclear neutrophils in patients with Wegener's granulomatosis. Kidney International, 1999, vol. 55, iss. 5, pp. 1811-1818. - https://linkinghub.elsevier.com/retrieve/pii/S0085253815461368

143. Himmel M.E., Crome S.Q., Ivison S., Piccirillo C., Steiner T.S., Levings M.K. Human CD4+FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. European Journal of Immunology, 2011, vol. 41, iss. 2, pp. 306-312. - https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.201040459

144. doi: 10.1002/eji.201040459.

145. Hock B.D., Taylor K.G., Cross N.B., Kettle A.J., Hampton M.B., McKenzie J.L. Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability. Immunology, 2012, vol. 137, iss. 3, pp. 249-258. - https://onlinelibrary.wiley.com/doi/abs/10.1111/imm.12004

146. doi: 10.1111/imm.12004.

147. Honda M., Takeichi T., Hashimoto S., Yoshii D., Isono K., Hayashida S., Ohya Y., Yamamoto H., Sugawara Y., Inomata Y. Intravital imaging of neutrophil recruitment reveals the efficacy of FPR1 blockade in hepatic ischemia-reperfusion injury. The Journal of Immunology, 2017, vol. 198, iss. 4, pp. 1718-1728. - http://www.jimmunol.org/content/198/4/1718

148. doi: 10.4049/jimmunol.1601773.

149. Hong CW. Current understanding in neutrophil differentiation and heterogeneity. Immune Network, 2017, vol. 17, iss. 5, pp. 298-306. - https://immunenetwork.org/DOIx.php?id=10.4110/in.2017.17.5.298

150. doi: 10.4110/in.2017.17.5.298.

151. Houghton A.M., Rzymkiewicz D.M., Ji H., Gregory A.D., Egea E.E., Metz H.E., Stolz D.B., Land S.R., Marconcini L.A., Kliment C.R., Jenkins K.M., Beaulieu K.A., Mouded M., Frank S.J., Wong K.K., Shapiro S.D. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 2010, vol. 16, iss. 2, pp. 219–223. - https://www.nature.com/articles/nm.2084

152. doi: 10.1038/nm.2084.

153. Hu P., Shen M., Zhang P., Zheng C., Pang Z., Zhu L., Du J. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells. Tumor Biology, 2015, vol. 36, iss. 10, pp. 7789–7796. - https://link.springer.com/article/10.1007%2Fs13277-015-3484-1

154. doi: 10.1007/s13277-015-3484-1.

155. Huang A., Zhang B., Wang B., Zhang F., Fan K.X., Guo Y.J. Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunology, Immunotherapy, 2013, vol. 62, iss. 9, pp. 1439–1451. - https://link.springer.com/article/10.1007%2Fs00262-013-1450-6

156. doi: 10.1007/s00262-013-1450-6.

157. Huh S.J., Liang S., Sharma A., Dong C., Robertson G.P. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 2010, vol. 70, iss. 14, pp. 6071–6082. - http://cancerres.aacrjournals.org/content/70/14/6071

158. doi: 10.1158/0008-5472.CAN-09-4442.

159. Iking-Konert C., Vogt S., Radsak M., Wagner C., Hänsch G.M., Andrassy K. Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells. Kidney International, 2001, vol. 60, iss. 6, pp. 2247–2262. - https://linkinghub.elsevier.com/retrieve/pii/S0085253815481177

160. Jablonska J., Leschner S., Westphal K., Lienenklaus S., Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation, 2010, vol. 120, iss. 4, pp. 1151–1164. - https://www.jci.org/articles/view/37223

161. doi: 10.1172/JCI37223.

162. Jenne C.N., Liao S., Singh B. Neutrophils: multitasking first responders of immunity and tissue homeostasis. Cell and Tissue Research, 2018, vol. 371, iss. 3, pp. 395–397. - https://link.springer.com/article/10.1007%2Fs00441-018-2802-5

163. doi: 10.1007/s00441-018-2802-5.

164. Jensen H.K., Donskov F., Marcussen N., Nordsmark M., Lundbeck F., von der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 2009, vol. 27, iss. 28, pp. 4709–4717. - http://ascopubs.org/doi/10.1200/JCO.2008.18.9498

165. doi: 10.1200/JCO.2008.18.9498.

166. Jensen T.O., Schmidt H., Møller H.J., Donskov F., Høyer M., Sjoegren P., Christensen I.J., Steiniche T. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer, 2012, vol. 118, iss. 9, pp. 2476–2485. - https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.26511

167. doi: 10.1002/cncr.26511.

168. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009, vol. 9, iss. 4, pp. 239-252. - https://www.nature.com/articles/nrc2618

169. doi: 10.1038/nrc2618.

170. Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 2009, vol. 119, iss. 6, pp. 1420–1428. - https://www.jci.org/articles/view/39104

171. doi: 10.1172/JCI39104.

172. Kalyan S., Kabelitz D. When neutrophils meet T cells: beginnings of a tumultuous relationship with underappreciated potential. European Journal of Immunology, 2014, vol. 44, iss. 3, pp. 627-633. - https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.201344195

173. doi: 10.1002/eji.201344195.

174. Kamenyeva O., Boularan C., Kabat J., Cheung G.Y., Cicala C., Yeh A.J., Chan J.L., Periasamy S., Otto M., Kehrl J.H. Neutrophil recruitment to lymph nodes limits local humoral response to Staphylococcus aureus. PLoS patogens, 2015, vol. 11, iss. 4:e1004827. - http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004827

175. doi: 10.1371/journal.ppat.1004827.

176. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature, 2005, vol. 438, iss. 7069, pp. 820–827. - https://www.nature.com/articles/nature04186

177. Kindzelskii A.L., Petty H.R. Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis. The Journal of Immunology, 1999, vol. 162, iss. 6, pp. 3188–3192. - http://www.jimmunol.org/content/162/6/3188

178. Klemke M., Wabnitz G.H., Funke F., Funk B., Kirchgessner H., Samstag Y. Oxidation of cofilin mediates T cell hypore¬sponsiveness under oxidative stress conditions. Immunity, 2008, vol. 29, iss. 3, pp. 404–413. - https://linkinghub.elsevier.com/retrieve/pii/S1074761308003695

179. doi: 10.1016/j.immuni.2008.06.016.

180. Knaapen A.M., Güngör N., Schins R.P., Borm P.J., Van Schooten F.J. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 2006, vol. 21, iss. 4, pp. 225–236. - https://academic.oup.com/mutage/article/21/4/225/1271645

181. Koga Y., Matsuzaki A., Suminoe A., Hattori H., Hara T. Neutrophil-derived related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Research, 2004, vol. 64, iss. 3, pp. 1037–1043. - http://cancerres.aacrjournals.org/content/64/3/1037.long

182. Kolaczkowska E., Jenne C.N., Surewaard B.G., Thanabalasuriar A., Lee W.Y., Sanz M.J., Mowen K., Opdenakker G., Kubes P. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nature Communications, 2015, vol. 6, article number: 6673. - https://www.nature.com/articles/ncomms7673

183. doi: 10.1038/ncomms7673.

184. Kowanetz M., Wu X., Lee J., Tan M., Hagenbeek T., Qu X., Yu L., Ross J., Korsisaari N., Cao T., Bou-Reslan H., Kallop D., Weimer R., Ludlam M.J., Kaminker J.S., Modrusan Z., van Bruggen N., Peale F.V., Carano R., Meng Y.G., Ferrara N. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. PNAS, 2010, vol. 107, iss. 50, pp. 21248-21255. - http://www.pnas.org/content/107/50/21248

185. doi: 10.1073/pnas.1015855107.

186. Kropf P., Baud D., Marshall S.E., Munder M., Mosley A., Fuentes J.M., Bangham C.R., Taylor G.P., Herath S., Choi B.S., Soler G., Teoh T., Modolell M., Müller I. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. European Journal of Immunology, 2007, vol. 37, iss 4, pp. 935-945. - https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.200636542

187. Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathogens, 2015, vol. 11, no. 3: e1004651. - http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004651

188. doi: 10.1371/journal.ppat.1004651.

189. Kubes P. The enigmatic neutrophil: what we do not know. Cell and Tissue Research, 2018, vol. 371, iss. 3, pp. 399–406.

190. - https://link.springer.com/article/10.1007%2Fs00441-018-2790-5

191. Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C., Gregorio J., Meller S., Chamilos G., Sebasigari R., Riccieri V., Bassett R., Amuro H., Fukuhara S., Ito T., Liu Y.J., Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Science Translation Medicine, 2011, vol. 3, iss. 73, pp. 73ra19. - http://stm.sciencemag.org/content/3/73/73ra19

192. doi: 10.1126/scitranslmed.3001180.

193. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., Zal T., Mellman I., Schröder J.M., Liu Y.J., Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, vol. 449, iss. 7162, pp. 564-569. - https://www.nature.com/articles/nature06116

194. Lechner M.G., Liebertz D.J., Epstein A.L. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. The Journal of Immunology, 2010, vol. 185, iss. 4, pp. 2273–2284. - http://www.jimmunol.org/content/185/4/2273

195. doi: 10.4049/jimmunol.1000901.

196. Levy B.D., Clish C.B., Schmidt B., Gronert K., Serhan C.N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunology, 2001, vol. 2, pp. 612–619. - https://www.nature.com/articles/ni0701_612

197. Li X., Dai D., Chen B., Tang H., Xie X., Wei W. The value of neutrophil-to-lymphocyte ratio for response and prognostic effect of neoadjuvant chemotherapy in solid tumors: a systematic review and meta-analysis. Journal of Cancer, 2018, vol. 9, iss. 5, pp. 861-871. - http://www.jcancer.org/v09p0861.htm

198. doi: 10.7150/jca.23367.

199. Li Y.W., Qiu S.J., Fan J., Zhou J., Gao Q., Xiao Y.S., Xu Y.F. Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. Journal of Hepatology, 2011, vol. 54, iss. 3, pp. 497–505. - https://www.journal-of-hepatology.eu/article/S0168-8278(10)00837-8/fulltext

200. doi: 10.1016/j.jhep.2010.07.044.

201. Liang F., Lindgren G., Sandgren K.J., Thompson E.A., Francica J.R., Seubert A., De Gregorio E., Barnett S., O'Hagan D.T., Sullivan N.J., Koup R.A., Seder R.A., Loré K. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Science Translational Medicine, 2017, vol. 9, iss. 393: eaal2094. - http://stm.sciencemag.org/content/9/393/eaal2094

202. doi: 10.1126/scitranslmed.aal2094.

203. Liang W., Ferrara N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunology Research, 2016, vol. 4, iss. 2, pp. 83-91. - http://cancerimmunolres.aacrjournals.org/content/4/2/83

204. doi: 10.1158/2326-6066.CIR-15-0313.

205. Lichtenstein A., Seelig M., Berek J., Zighelboim J. Human neutrophil-mediated lysis of ovarian cancer cells. Blood, 1989, vol. 74, iss. 2, pp. 805–809. - http://www.bloodjournal.org/content/74/2/805.long?sso-checked=true

206. Lin A., Loré K. Granulocytes: new members of the antigen-presenting cell family. Frontiers in Immunology, 2017, vol. 8: 1781. - https://www.frontiersin.org/articles/10.3389/fimmu.2017.01781/full

207. doi: 10.3389/fimmu.2017.01781.

208. Liu C., Li Y., Yu J., Feng L., Hou S., Liu Y., Guo M., Xie Y., Meng J., Zhang H., Xiao B., Ma C. Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One, 2013, vol. 8, no. 2:e54841. - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054841

209. doi: 10.1371/journal.pone.0054841.

210. Liu Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annual Review of Immunology, 2005, vol. 23, pp. 275-306. - https://www.annualreviews.org/doi/10.1146/annurev.immunol.23.021704.115633

211. Lopez-Lago M.A., Posner S., Thodima V.J., Molina A.M., Motzer R.J., Chaganti R.S. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene, 2013, vol. 32, iss. 14, pp. 1752–1760. - https://www.nature.com/articles/onc2012201

212. doi: 10.1038/onc.2012.201.

213. Loynes C.A., Lee J.A., Robertson A.L., Steel M.J.G., Ellett F., Feng Y., Levy B.D., Whyte M.K., Renshaw S.A. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. BioRxiv, 2017.

214. - https://doi.org/10.1101/205997

215. Luckner-Minden C., Fischer I., Langhans C.D., Schiller M., Kropf P., Muller I., Hohlfeld J.M., Ho A.D., Munder M. Human eosinophil granulocytes do not express the enzyme arginase. Journal of Leukocyte Biology, 2010, vol. 87, iss. 6, pp. 1125–1132. - https://jlb.onlinelibrary.wiley.com/doi/abs/10.1189/jlb.1109741

216. doi: 10.1189/jlb.1109741.

217. Mader J.S., Ewen C., Hancock R.E., Bleackley R.C. The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in regulatory T cells. Journal of Immunotherapy, 2011, vol. 34, iss. 3, pp. 229–235. - https://insights.ovid.com/crossref?an=00002371-201104000-00001

218. doi: 10.1097/CJI.0b013e318207ecdf.

219. Mader J.S., Marcet-Palacios M., Hancock R.E., Bleackley R.C. The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in cytotoxic T lymphocytes. Experimental Cell Research, 2011, vol. 317, iss. 4, pp. 531-538. - https://www.sciencedirect.com/science/article/pii/S0014482710005446?via%3Dihub

220. doi: 10.1016/j.yexcr.2010.11.015.

221. Maffia P.C., Zittermann S.E., Scimone M.L., Tateosian N., Amiano N., Guerrieri D., Lutzky V., Rosso D., Romeo H.E., Garcia V.E., Issekutz A.C., Chuluyan H.E. Neutrophil elastase converts human immature dendritic cells into transforming growth factor-β1-secreting cells and reduces allostimulatory ability. The American Journal of Pathology, 2007, vol. 171, iss. 3, pp. 928–937. - https://linkinghub.elsevier.com/retrieve/pii/S000294401062024X

222. Malcolm K.C., Arndt P.G., Manos E.J., Jones D.A., Worthen G.S. Microarray analysis of lipopolysaccharide-treated human neutrophils. American Journal of Physiology – Lung Cellular and Molecular Physiology, 2003, vol. 284, iss. 4, pp. L663–L670. - https://www.physiology.org/doi/10.1152/ajplung.00094.2002

223. Maletto B.A., Ropolo A.S., Alignani D.O., Liscovsky M.V., Ranocchia R.P., Moron V.G., Pistoresi-Palencia M.C. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood, 2006, vol. 108, iss. 9, pp. 3094-3102. - http://www.bloodjournal.org/content/108/9/3094?sso-checked=true

224. Malmberg K.J., Arulampalam V., Ichihara F., Petersson M., Seki K., Andersson T., Lenkei R., Masucci G., Pettersson S., Kiessling R. Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF‐kappaB activation. The Journal of Immunology, 2001, vol. 167, iss. 5, pp. 2595–2601. - https://www.semanticscholar.org/paper/Inhibition-of-activated%2Fmemory-%28CD45RO%28%2B%29%29-T-cells-Malmberg-Arulampalam/5369ff4a7065581ede707465e3c825b6818129f6

225. Mandruzzato S., Brandau S., Britten C.M., Bronte V., Damuzzo V., Gouttefangeas C., Maurer D., Ottensmeier C., van der Burg S.H., Welters M.J., Walter S. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunology, Immunotherapy, 2016, vol. 65, iss. 2, pp. 161–169. - https://link.springer.com/article/10.1007%2Fs00262-015-1782-5

226. doi: 10.1007/s00262-015-1782-5.

227. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 2011, vol. 11, iss. 8, pp. 519-531. - https://www.nature.com/articles/nri3024

228. doi: 10.1038/nri3024.

229. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports, 2014, vol. 6: 13. - https://f1000.com/prime/reports/b/6/13

230. doi: 10.12703/P6-13.

231. Masedunskas A., Milberg O., Porat-Shliom N., Sramkova M., Wigand T., Amornphimoltham P., Weigert R. Intravital microscopy: a practical guide on imaging intracellular structures in live animals. BioArchitecture, 2012, vol. 2, iss. 5, pp. 143–157. - https://www.tandfonline.com/doi/abs/10.4161/bioa.21758

232. doi: 10.4161/bioa.21758.

233. Mathias J.R., Perrin B.J., Liu T.X., Kanki J., Look A.T., Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. Journal of Leukocyte Biology, 2006, vol. 80, iss. 6, pp. 1281-1288. - https://jlb.onlinelibrary.wiley.com/doi/abs/10.1189/jlb.0506346

234. Matsushima H., Geng S., Lu R., Okamoto T., Yao Y., Mayuzumi N., Kotol P.F., Chojnacki B.J., Miyazaki T., Gallo R.L., Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood, 2013, vol. 121, iss. 10, pp. 1677-1689. - http://www.bloodjournal.org/content/121/10/1677?sso-checked=true

235. doi: 10.1182/blood-2012-07-445189.

236. McDonald B., Pittman K., Menezes G.B., Hirota S.A., Slaba I., Waterhouse C.C., Beck P.L., Muruve D.A., Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science, 2010, vol. 330, iss. 6002, pp. 362–366. - http://science.sciencemag.org/content/330/6002/362.full

237. doi: 10.1126/science.1195491.

238. McNulty S., Fonfria E. The role of TRPM channels in cell death. Pflügers Archiv - European Journal of Physiology, 2005, vol. 451, iss. 1, pp. 235–242. - https://link.springer.com/article/10.1007%2Fs00424-005-1440-4

239. Means T.K., Latz E., Hayashi F., Murali M.R., Golenbock D.T., Luster A.D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. The Journal of Clinical Investigation, 2005, vol. 115, iss. 2, pp. 407–417. - https://www.jci.org/articles/view/23025

240. Merad M., Manz M.G. Dendritic cell homeostasis. Blood, 2009, vol. 113, iss. 15, pp. 3418-3427. - http://www.bloodjournal.org/content/113/15/3418

241. doi: 10.1182/blood-2008-12-180646.

242. Mishalian I., Bayuh R., Eruslanov E., Michaeli J., Levy L., Zolotarov L., Singhal S., Albelda S.M., Granot Z., Fridlender Z.G. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 – a new mechanism of impaired antitumor immunity. International Journal of Cancer, 2014, vol. 135, iss. 5, pp.1178–1186. - https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.28770

243. doi: 10.1002/ijc.28770.

244. Mougiakakos D., Johansson C.C., Kiessling R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood, 2009, vol. 113, iss. 15, pp. 3542–3545. - http://www.bloodjournal.org/content/113/15/3542?sso-checked=true

245. doi: 10.1182/blood-2008-09-181040.

246. Munder M., Mollinedo F., Calafat J., Canchado J., Gil-Lamaignere C., Fuentes J.M., Luckner C., Doschko G., Soler G., Eichmann K., Muller F.M., Ho A.D., Goerner M., Modolell M. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 2005, vol. 105, iss. 6, pp. 2549–2556. - http://www.bloodjournal.org/content/105/6/2549

247. Munder M., Schneider H., Luckner C., Giese T., Langhans C.D., Fuentes J.M., Kropf P., Mueller I., Kolb A., Modolell M., Ho A.D. Suppression of T-cell functions by human granulocyte arginase. Blood, 2006, vol. 108, iss. 5, pp. 1627-1634. - http://www.bloodjournal.org/content/108/5/1627

248. Nakazawa D., Shida H., Kusunoki Y., Miyoshi A., Nishio S., Tomaru U., Atsumi T., Ishizu A. The responses of macrophages in interaction with neutrophils that undergo NETosis. Journal of Autoimmunity, 2016, vol. 67, pp. 19-28. - https://www.sciencedirect.com/science/article/pii/S0896841115300366?via%3Dihub

249. doi: 10.1016/j.jaut.2015.08.018.

250. Nicolás-Ávila J.Á., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. - https://www.cell.com/immunity/fulltext/S1074-7613(16)30518-0?_returnURL

251. doi: 10.1016/j.immuni.2016.12.012.

252. Ocana A., Nieto-Jiménez C., Pandiella A., Templeton A.J. Neutrophils in cancer: prognostic role and therapeutic strategies. Molecular Cancer, 2017, vol. 16, iss. 1: 137. - https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0707-7

253. doi: 10.1186/s12943-017-0707-7.

254. Odobasic D., Kitching A.R., Yang Y., O’Sullivan K.M., Muljadi R.C., Edgtton K.L., Tan D.S., Summers S.A., Morand E.F., Holdsworth S.R. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood, 2013 vol. 121, iss. 20, pp. 4195-4204. - http://www.bloodjournal.org/content/121/20/4195?sso-checked=true

255. doi: 10.1182/blood-2012-09-456483.

256. Ostrand-Rosenberg S., Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology, 2009, vol. 182, iss. 8, pp. 4499–4506. - http://www.jimmunol.org/content/182/8/4499

257. doi: 10.4049/jimmunol.0802740.

258. Ouyang W., Kolls J.K., Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 2008, vol. 28, iss. 4, pp. 454-467. - https://www.cell.com/immunity/fulltext/S1074-7613(08)00119-2?_returnURL

259. doi: 10.1016/j.immuni.2008.03.004.

260. Påhlman L.I., Mörgelin M., Eckert J., Johansson L., Russell W., Riesbeck K., Soehnlein O., Lindbom L., Norrby-Teglund A., Schumann R.R., Björck L., Herwald H. Streptococcal M-protein: a multipotent and powerful inducer of inflammation. The Journal of Immunology, 2006, vol. 177, iss. 2, pp. 1221–1228. - http://www.jimmunol.org/content/177/2/1221

261. Park S.A., Hyun YM. Neutrophil extravasation cascade: what can we learn from two-photon intravital imaging? Immune Network, 2016, vol. 16, iss. 6, pp. 317–321. - https://immunenetwork.org/DOIx.php?id=10.4110/in.2016.16.6.317

262. doi: 10.4110/in.2016.16.6.317.

263. Pelletier M., Maggi L., Micheletti A., Lazzeri E., Tamassia N., Costantini C., Cosmi L., Lunardi C., Annunziato F., Romagnani S., Cassatella M.A. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 2010, vol. 115, iss. 2, pp. 335-343. - http://www.bloodjournal.org/content/115/2/335

264. doi: 10.1182/blood-2009-04-216085.

265. Perobelli S.M., Silva T.G., Bonomo A. Neutrophils plasticity: the regulatory interface in various pathological conditions / Role of neutrophils in disease pathogenesis. Edited by Maitham Khajah. Chapter 7. Published by InTechOpen, 2017, 178 p. - https://www.intechopen.com/books/role-of-neutrophils-in-disease-pathogenesis/neutrophils-plasticity-the-regulatory-interface-in-various-pathological-conditions

266. Perobelli S.M., Galvani R.G., Gonçalves-Silva T., Xavier C.R., Nóbrega A., Bonomo A. Plasticity of neutrophils reveals modulatory capacity. Brazilian Journal of Medical and Biological Research, 2015, vol. 48, no. 8, pp. 665-675. - http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000800665&lng=en&tlng=en

267. doi: 10.1590/1414-431X20154524.

268. Piccard H., Muschel R.J., Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 2012, vol. 82, iss. 3, pp. 296–309. - https://www.croh-online.com/article/S1040-8428(11)00162-4/fulltext

269. doi: 10.1016/j.critrevonc.2011.06.004.

270. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. The Journal of Clinical Investigation, 2012, vol. 122, iss. 1, pp. 327–336. - https://www.jci.org/articles/view/57990

271. doi: 10.1172/JCI57990.

272. Pillay J., Tak T., Kamp V.M., Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cellular and Molecular Life Sciences, 2013, vol. 70, iss. 20, pp. 3813–3827. - https://link.springer.com/article/10.1007%2Fs00018-013-1286-4

273. doi: 10.1007/s00018-013-1286-4.

274. Pittman K., Kubes P. Damage-associated molecular patterns control neutrophil recruitment. Journal of Innate Immunity, 2013, vol. 5, no. 4, pp. 315–323. - https://www.karger.com/Article/FullText/347132

275. doi: 10.1159/000347132.

276. Poon I.K., Lucas C.D., Rossi A.G., Ravichandran K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology, 2014, vol. 14, iss. 3, pp. 166-180. - https://www.nature.com/articles/nri3607

277. doi: 10.1038/nri3607.

278. Powell D.R., Huttenlocher A. Neutrophils in the tumor microenvironment. Trends in Immunology, 2016, vol. 37, iss. 1, pp. 41-52. - https://www.cell.com/trends/immunology/fulltext/S1471-4906(15)00291-4?_returnURL

279. doi: 10.1016/j.it.2015.11.008.

280. Prame Kumar K., Nicholls A.J., Wong C.H.Y. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell and Tissue Research, 2018, vol. 371, iss. 3, pp. 551–565. - https://link.springer.com/article/10.1007%2Fs00441-017-2753-2

281. doi: 10.1007/s00441-017-2753-2.

282. Psaila B., Lyden D. The metastatic niche: adapting the foreign soil. Nature Reviews Cancer, 2009, vol. 9, iss. 4, pp. 285–293. - https://www.nature.com/articles/nrc2621

283. doi: 10.1038/nrc2621.

284. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., Magri G., Knowles D.M., Tam W., Chiu A., Bussel J.B., Serrano S., Lorente J.A., Bellosillo B., Lloreta J., Juanpere N., Alameda F., Baró T., de Heredia C.D., Torán N., Català A., Torrebadell M., Fortuny C., Cusí V., Carreras C., Diaz G.A., Blander J.M., Farber C.M., Silvestri G., Cunningham-Rundles C., Calvillo M., Dufour C., Notarangelo L.D., Lougaris V., Plebani A., Casanova J.L., Ganal S.C., Diefenbach A., Aróstegui J.I., Juan M., Yagüe J., Mahlaoui N., Donadieu J., Chen K., Cerutti A. B cell–helper neutrophils stimulate immunoglobulin diversification and production in the marginal zone of the spleen. Nature Immunology, 2011, vol. 13, iss. 2, pp. 170-180. - https://www.nature.com/articles/ni.2194

285. doi: 10.1038/ni.2194.

286. Queen M.M., Ryan R.E., Holzer R.G., Keller-Peck C.R., Jorcyk C.L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 2005, vol. 65, iss. 19, pp. 8896-8904. - http://cancerres.aacrjournals.org/content/65/19/8896

287. Radsak M., Iking-Konert C., Stegmaier S., Andrassy K., Hänsch G.M. Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation. Immunology, 2000, vol. 101, iss. 4, pp. 521-530. - https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2567.2000.00140.x

288. Rafii S., Lyden D. S100 chemokines mediate bookmarking of premetastatic niches. Nature Cell Biology, 2006, vol. 8, iss. 12, pp. 1321–1323. - https://www.nature.com/articles/ncb1206-1321

289. Rahman A.H., Taylor D.K., Turka L.A. The contribution of direct TLR signaling to T cell responses. Immunologic Research, 2009, vol. 45, iss. 1, pp. 25-36. - https://link.springer.com/article/10.1007%2Fs12026-009-8113-x

290. doi: 10.1007/s12026-009-8113-x.

291. Randolph G.J., Ochando J., Patrida-Sanchez S. Migration of dendritic cell subsets and their precursors. Annual Review of Immunology, 2008, vol. 26, pp. 293-316. - https://www.annualreviews.org/doi/10.1146/annurev.immunol.26.021607.090254

292. Rao H.L., Chen J.W., Li M., Xiao Y.B., Fu J., Zeng Y.X., Cai M.Y., Xie D. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS One, 2012, vol. 7, iss. 1: e30806. - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030806

293. doi: 10.1371/journal.pone.0030806.

294. Ribeiro-Gomes F.L., Peters N.C., Debrabant A., Sacks D.L. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathogens, 2012, vol. 8, iss. 2:e1002536. - http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002536

295. doi: 10.1371/journal.ppat.1002536.

296. Ribeiro‐Gomes F.L., Romano A., Lee S., Roffê E., Peters N.C., Debrabant A., Sacks D. Apoptotic cell clearance of Leishmania major‐infected neutrophils by dendritic cells inhibits CD8+ T‐cell priming in vitro by Mer tyrosine kinase‐dependent signaling. Cell Death and Disease, 2015, vol. 6: e2018. - https://www.nature.com/articles/cddis2015351

297. doi: 10.1038/cddis.2015.351.

298. Rodriguez F.M., Novak I.T.C. Costimulatory molecules CD80 and CD86 colocalized in neutrophil extracellular traps (NETs). Journal of Immunology and Infectious Diseases, 2016, vol. 3, iss. 1:103. - https://www.semanticscholar.org/paper/Costimulatory-Molecules-CD-80-and-CD-86-Colocalized-Dis/26b3b0698c6b36e0fc7cb3ccacadc64e023a9f1f

299. Rodriguez P.C., Quiceno D.G., Ochoa A.C. L-arginine avail¬ability regulates T-lymphocyte cell-cycle progression. Blood, 2007, vol. 109, iss. 4, pp. 1568–1573. - http://www.bloodjournal.org/content/109/4/1568?sso-checked=true

300. Rodriguez P.C., Zea A.H., Culotta K.S., Zabaleta J., Ochoa J.B., Ochoa A.C. Regulation of T cell receptor CD3zeta chain expression by L‐arginine. Journal of Biological Chemistry, 2002, vol. 277, iss. 24, pp. 21123–21129. - http://www.jbc.org/content/277/24/21123

301. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Frontiers in Physiology, 2018, vol. 9:113. - https://www.frontiersin.org/articles/10.3389/fphys.2018.00113/full

302. doi: 10.3389/fphys.2018.00113.

303. Rotondo R., Bertolotto M., Barisione G., Astigiano S., Mandruzzato S., Ottonello L., Dallegri F., Bronte V., Ferrini S., Barbieri O. Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. Journal of Leukocyte Biology, 2011, vol. 89, iss. 5, pp. 721-727. - https://jlb.onlinelibrary.wiley.com/doi/abs/10.1189/jlb.1109737

304. doi: 10.1189/jlb.1109737.

305. Sagiv J.Y., Michaeli J., Assi S., Mishalian I., Kisos H., Levy L., Damti P., Lumbroso D., Polyansky L., Sionov R.V., Ar


Дополнительные файлы

1. Нейтрофил как «многофункциональное устройство» иммунной системы
Тема нейтрофильные гранулоциты, иммунорегуляторные функции, воспаление, адаптивный иммунитет, рак, тумор-ассоциированные нейтрофилы.
Тип Исследовательские инструменты
Скачать (15KB)    
Метаданные
2. Нейтрофил как «многофункциональное устройство» иммунной системы
Тема нейтрофильные гранулоциты, иммунорегуляторные функции, воспаление, адаптивный иммунитет, рак, тумор-ассоциированные нейтрофилы.
Тип Исследовательские инструменты
Скачать (80KB)    
Метаданные
3. Нейтрофил как «многофункциональное устройство» иммунной системы
Тема нейтрофильные гранулоциты, иммунорегуляторные функции, воспаление, адаптивный иммунитет, рак, тумор-ассоциированные нейтрофилы.
Тип Исследовательские инструменты
Скачать (82KB)    
Метаданные
4. Нейтрофил как «многофункциональное устройство» иммунной системы
Тема нейтрофильные гранулоциты, иммунорегуляторные функции, воспаление, адаптивный иммунитет, рак, тумор-ассоциированные нейтрофилы.
Тип Исследовательские инструменты
Скачать (1MB)    
Метаданные
5. Нейтрофил как «многофункциональное устройство» иммунной системы
Тема нейтрофильные гранулоциты, иммунорегуляторные функции, воспаление, адаптивный иммунитет, рак, тумор-ассоциированные нейтрофилы.
Тип Исследовательские инструменты
Скачать (1MB)    
Метаданные

Для цитирования:


Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы. Инфекция и иммунитет. 2019;. https://doi.org/10.15789/2220-7619-2019-0-

For citation:


Dolgushin I.I., Mezentseva E.A., Savochkina A.Y., Kuznetsova E.K. Neutrophil as a multifunctional relay in immune system. Russian Journal of Infection and Immunity. 2019;. https://doi.org/10.15789/2220-7619-2019-0-

Просмотров: 24


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)