Preview

Инфекция и иммунитет

Расширенный поиск

АНТИМИКРОБНЫЕ ПЕПТИДЫ — ПОТЕНЦИАЛЬНАЯ ЗАМЕНА ТРАДИЦИОННЫМ АНТИБИОТИКАМ

https://doi.org/10.15789/2220-7619-2018-3-295-308

Полный текст:

Аннотация

Антимикробные пептиды (АМП) представляют собой гетерогенную группу молекул, участвующих во врожденном и приобретенном иммунном ответе различных организмов, начиная с прокариот и заканчивая млекопитающими, включая человека. Они состоят из 12–50 аминокислотных остатков, обладают разными физико-химическими и биологическими свойствами. Наиболее общим признаком является их способность разрушать клеточную мембрану прокариот, вызывая тем самым гибель клеток. АМП встраиваются в целевые бактериальные клетки и, изменяя свою конформацию, образуют структуры в некоторых случаях напоминающие каналы. Некоторые другие молекулы АМП могут прикрепляться к поверхности бактериальной клетки и образовывать участки повышенной концентрации, при достижении критического числа которых они действуют подобно моющим средствам. Кроме того, будучи заряженными положительно, молекулы таких пептидов, проникая сквозь мембраны паразитарных и бактериальных клеток связываются с полианионными молекулами РНК и ДНК. В число преимуществ АМП входит их высокая метаболическая активность, низкая вероятность возникновения привыкания и побочных эффектов. Кроме того, бактериальным патогенам, ранее не имевшим устойчивости к каким-либо АМП, тяжело выработать стратегию борьбы с ними. В связи с чем, АМП являются наиболее перспективными молекулами-заменителями традиционных антибиотиков. В статье обсуждаются подходы и стратегии терапевтического использования, выработанные за последние годы изучения антимикробных пептидов; описываются наиболее часто встречающиеся механизмы взаимодействия антимикробных пептидов и бактериальной мембраны, физико-химические свойства молекул пептидов; обобщаются результаты исследований по выявлению резистентности некоторых штаммов бактерий к антимикробным пептидам и антибиотикам в целом.

Об авторе

Х. Г. Мусин
ФГБОУ ВО Башкирский государственный университет.
Россия

аспирант кафедры биохимии и биотехнологии биологического факультета.

450076, Россия, г. Уфа, ул. Заки Валиди, 32.

Тел.: 8 961 359-73-89 (моб.).



Список литературы

1. Абрамов В.Я. Два великих француза: благодетель человечества Луи Пастер и апостол образования Жан Масэ. СПб.: М. Городецкий, 1897.

2. Артамонов А.Ю., Шанин С.Н., Орлов Д.С., Шамова О.В., Колодкин Н.И., Рыбакина Е.Г. Иммуномодулирующая активность антимикробных пептидов индолицидина и его структурных аналогов // Медицинская иммунология. 2009. T. 11 (1). C. 101–104.

3. Abderhalden E., Fodor A. Synthese von hochmolekularen polypeptiden aus glykokoll und l-leucin. Berichte der Deutschen Chemischen Gesellschaft, 1916, vol. 49, iss. 1.

4. Actor J.K., Hwang S.-A., Kruzel M.L. Lactoferrin as a natural immune modulator. Curr. Pharm. Des., 2009, vol. 15 (17), pp. 1956–1973.

5. Alalwani S.M., Sierigk J., Herr Ch., Pinkenburg O., Gallo R., Vogelmeier C., Bals R. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur. J. Immunol., 2010, vol 40 (4), pp. 1118–1126. doi: 10.1002/ eji.200939275

6. Anfinsen C.B., Edsall J.T., Richards F.M. Advances in protein chemistry. NY: Academic Press, 1972, pp. 99–103.

7. Bagiolini M., de Duve C., Masson P.L., Heremans J.F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J. Exp. Med., 1970, vol. 131, no. 3, pp. 559–570.

8. Bennett W.F., Hong C.K., Wang Y., Tieleman D.P. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput., 2016. vol. 12 (9), pp. 4524–4533. doi: 10.1021/acs.jctc.6b00265

9. Bessalle R., Gorea A., Shalit I., Metzger J.W., Dass C., Desiderio D.M. Structure-function studies of amphiphilic antibacterial peptides. J. Med. Chem., 1993, vol. 36, pp. 1203–1209.

10. Bloch-Shilderman E., Jiang,H., Lazarovici P. Pardaxin, an ionophore neurotoxin, induces PC12 cell death: activation of stress kinases and production of reactive oxygen species. J. Nat. Toxins, 2002, vol. 11, pp. 71–85.

11. Brannan A.M., Whelan W.A., Cole E., Booth V. Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target. Peer J., 2015. doi: 10.7717/peerj.1516

12. Carmona-Ribeiro A.M. Interactions between bilayer vesicles, biomolecules, and interfaces. Handbook of surfaces and interfaces of materials; ed. Nalwa H.S. Academic Press; Burlington, VT, USA: 2001, pp. 129–165.

13. Cashman K.A., Bayer A.S., Yeaman M.R. Diversity and susceptibility to antibiotics and cationic peptides among Enterococcus faecalis or Enterococcus faecium isolates of diverse clinical or geographic origin. 98th General Meeting for the American Society for Microbiology, 1998, pp. 17–21.

14. Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. Apidaecins: antibacterial peptides from honeybees. EMBO J., 1989, vol. 8 (8), pp. 2387–2391.

15. Chan D.I., Prenner E.J., Vogel H.J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta, 2006, vol. 1758 (9), pp. 1184–1202.

16. Chavakis T., Cines D.B., Rhee J.S. Regulation of neovascularization by human neutrophil peptides (alphadefensins): a link between inflammation and angiogenesis. FASEB J., 2004, vol. 18 (11), pp. 1306–1308.

17. Chen F., Jia Z., Rice K.C., Reinhardt R.A., Bayles K.W., Wang D. The development of dentotropic micelles with biodegradable tooth-binding moieties. Pharm. Res., 2013, vol. 30 (11), pp. 2808–2817.

18. Costerton I. Bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol., 1981, vol. 35, pp. 299–324.

19. Dabirian S., Taslimi Y., Zahedifard F., Gholami E., Doustdari F., Motamedirad M., Khatami S., Azadmanesh K., Nylen S., Rafati S. Human neutrophil peptide-1 (HNP-1): a new anti-leishmanial drug candidate. PLoS Negl. Trop. Dis., 2013, vol. 7 (10), p. 2491. doi: 10.1371/journal.pntd.0002491

20. Davidson D.J., Currie A.J., Reid G.S., Bowdish D.M., MacDonald K.L., Ma R.C., Hancock R.E., Speert D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol., 2004, vol. 172 (2), pp. 1146–1156.

21. De Duve C. From cytases to lysosomes. Fed. Proc. 1964, vol. 23, pp. 1045–1049.

22. De Duve C. The lysosome turns fifty. Nat. Cell Biol., 2005, vol. 7, no. 9, pp. 847–849. doi: 10.1038/ncb0905-847

23. Dhople V., Krukemeyer A., Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta (BBA) – Biomembranes, 2006, vol. 1758 (9), pp. 1499–1512. doi: 10.1016/j.bbamem.2006.07.007

24. Droin N., Hendra J.B., Ducoroy P., Solary E. Human defensins as cancer biomarkers and antitumour molecules. J. Proteomics, 2009, vol. 72 (6), pp. 918–927. doi: 10.1016/j.jprot.2009.01.002

25. Economou N.J., Cocklin S., Loll P.J. High-resolution crystal structure reveals molecular details of target recognition by bacitracin. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 14207–14212. doi: 10.1073/pnas.1308268110

26. Falco A., Brocal I., Pérez L., Coll J.M., Estepa A., Tafalla C. In vivo modulation of the rainbow trout (Oncorhynchus mykiss) immune response by the human alpha defensin 1, HNP1. Fish Shellfish Immunol., 2008, vol. 24, pp. 102–112.

27. Fischer E. Untersuchungen über Aminosäuren, polypeptide und proteine (1899–1906). Verlag: Berlin Julius Springer, 1906.

28. Fischer G. Peptidyl-prolyl cis/trans isomerases and their effectors. Angew. Chem. Int. Ed. Engl., 1993, vol. 33, pp. 1415–1436.

29. Ganz T. Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp., 1994, vol. 186, pp. 62–71.

30. Ganz T., Lehrer R.I. Antimicrobial peptides of leukocytes. Curr. Opin. Hematol., 1997, vol. 4 (1), pp. 53–61.

31. Gutteridge J.M. Review Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. NY Acad. Sci., 1994, vol. 738, pp. 201–213.

32. Hachem R.Y., Chemaly R.F., Ahmar C.A., Jiang Y., Boktour M.R., Rjaili G.A., Bodey G.P., Raad I.I. Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob. Agents Chemother., 2007, vol. 51 (6), pp. 1905–1911. doi: 10.1128/AAC.01015-06

33. Hancock R.E.W., Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Let., 2002 vol. 206 (2), pp. 143–149. doi: 10.1111/j.1574-6968.2002.tb11000.x

34. Hancock R.E.W., Sahl H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, vol. 24, pp. 1551–1557. doi: 10.1038 /nbt1267

35. Harris M., Mora-Montes H.M., Gow N.A., Coote P.J. Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology, 2009, vol. 155, pp. 1058–1070.

36. Hassan M.J., Cheng F.L., Mohd Y.M.Y., Rukumani D.V., Vannajan S.L., Sharifuddin M.Z., Diyana M.I., Shamala D.S. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumonia. PLoS One, 2015, vol. 10 (6).

37. Hofmann C.M., Anderson J.M., Marchant R.E. Targeted delivery of vancomycin to Staphylococcus epidermidis biofilms using a fibrinogen-derived peptide. J. Biomed. Mater. Res. A., 2012, vol. 100, pp. 2517–2525.

38. Holak T.A., Engström A., Kraulis P.J., Lindeberg G., Bennich H., Jones T.A., Gronenborn A.M., Clore G.M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 1988, vol. 27 (20), pp. 7620–7629.

39. Kirienko N.V., Ausubel F.M., Ruvkun G. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2015, vol. 112 (6), pp. 1821–1826. doi: 10.1073/pnas.1424954112

40. Kreil G. Antimicrobial peptides from amphibian skin: an overview. Ciba Found Symp., 1994, vol. 186, pp. 77–90.

41. Larrick J.W., Hirata M., Shimomoura Y., Yoshida M., Zheng H., Zhong J., Wright S.C. Antimicrobial activity of rabbit CAP18- derived peptides. Antimicrob. Agents Chemother., 1993, vol. 37 (12), pp. 2534–2539.

42. Lim H.S., Chun S.M., Soung M.G., Kim J., Kim S.J. Antimicrobial efficacy of granulysin-derived synthetic peptides in acne vulgaris. Int. J. Dermatol., 2015, vol. 54 (7), pp. 853–862. doi: 10.1111/ijd.12756

43. Louvet J.-P., Mitchell H.S., Ross G.T. Effects of human chorionic gonadotropin, human interstitial cell stimulating hormone and human follicle-stimulating hormone on ovarian weights in estrogen-primed hypophysectomized immature female rats. Endocrinology, 1975, vol. 96 (5), pp. 1179–1186. doi: 10.1210/endo-96-5-1179

44. Lüllmann-Rauch R. History and morphology of the lysosome. In: Lysosomes. P. Saftig. Springer US, 2005, pp. 1–16.

45. MacLennan A.H. The role of the hormone relaxin in human reproduction and pelvic girdle relaxation. Scand. J. Rheumatol., 1991, suppl. 88, pp. 7–15.

46. Mahoney M.M., Lee A.Y., Brezinski-Caliguri D.J., Huttner K.M. Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS Letters, 1995, vol. 377 (3), pp. 519–522.

47. Mantovani H.C., Russell J.B. Nisin resistance of Streptococcus bovis. Appl. Environ. Microbiol., 2001, vol. 67, pp. 808–813.

48. Matsuzaki K., Harada M., Handa T., Funakoshi S., Fujii N., Yajima H., Miyajima K. Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim. Biophys. Acta, 1989, vol. 981 (1), pp. 130–134.

49. Metchnikoff E. Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann. Inst. Pasteur, 1887, vol. 1, p. 321.

50. Na D.H., Faraj J., Capan Y., Leung K.P., DeLuca P.P. Chewing gum of antimicrobial decapeptide (KSL) as a sustained antiplaque agent: preformulation study. J. Control Release, 2005, vol. 107, pp. 122–130. doi: 10.1016/j.jconrel.2005.05.027

51. Nahaie M.R., Goodfellow M., Minnikin D.E., Hajek V. Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol., 1984, vol. 130, pp. 2427–2437.

52. Neve S., Raventós D. NZ17074: an arenicin-3 variant found by HTS screening of yeast libraries. In: Novozymes A/S. Copenhagen: Adenium Biotech, 2012.

53. Niyonsaba F., Nagaoka I., Ogawa H., Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr. Pharm. Des., 2009, vol. 15 (21), pp. 2393–2413.

54. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998, vol. 47, pp. 451– 463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F

55. Osaki T., Omotezako M., Nagayama R., Hirata M., Iwanaga S., Kasahara J., Hattori J., Ito I., Sugiyama H., Kawabata S. Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J. Biol. Chem., 1999, vol. 274 (37), pp. 26172–26178.

56. Otvos L. Jr. Immunomodulatory effects of anti-microbial peptides. Acta Microbiol. Immunol. Hung., 2016, vol. 19, pp. 1–21. doi: 10.1556/030.63.2016.005

57. Pauling L. The nature of the chemical bond. 3rd ed. Cornell University Press, 1960.

58. Peschel A., Sahl H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol., 2006, vol. 4, pp. 529–536.

59. Pirtskhalava M., Gabrielian A., Cruz P., Griggs H.L., Squires B., Hurt D.E., Grigolava M., Chubinidze M., Gogoladze G., Vishnepolsky B., Alekseyev V., Rosenthal A., Tartakovsky M. DBAASP v.2: an enhanced database of structure and antimicrobial/ cytotoxic activity of natural and synthetic peptides. Nucl. Acids Res., 2016, vol. 44 (13). doi: 10.1093/nar/gkw243

60. Pütsep K., Faye I. Hans G. Boman (1924–2008): pioneer in peptide-mediated innate immune defence. Scand. J. Immunol., 2009, vol. 70 (3), pp. 317–326. doi: 10.1111/j.1365-3083.2009.02293.x

61. Roongsawang N., Washio K., Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci., 2011, vol. 12 (1), pp. 141–172. doi: 10.3390/ijms12010141

62. Sánchez-Vásquez L., Silva-Sanchez J., Jiménez-Vargas J.M., Rodríguez-Romero A., Muñoz-Garay C., Rodríguez M.C., Gurrola G.B., Possani L.D. Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. Biochim. Biophys. Acta, 2013, vol. 1830 (6), pp. 3427–3436. doi: 10.1016/j.bbagen.2013.01.028

63. Schneider D. Plant immune responses. Stanford University Department of Microbiology and Immunology, 2005. 11 p.

64. Shim D.W., Heo K.H., Kim Y.K., Sim E.J., Kang T.B., Choi J.W., Sim D.W., Cheong S.H., Lee S.H., Bang J.K., Won H.S., Lee K.H. Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of Toll-like receptor 4 Endocytosis in lipopolysaccharide-stimulated macrophages. PLoS One, 2015, vol. 10 (5). doi: 10.1371/journal.pone.0126871

65. Storici P., Zanetti M. A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence. Biochem. Biophys. Res. Commun., 1993, vol. 196 (3), pp. 1363–1368.

66. Strominger J.L. Animal antimicrobial peptides: ancient players in innate immunity. J. Immunol., 2009, vol. 182 (11), pp. 6633– 6637. doi: 10.4049/jimmunol.0990038

67. Subbalakshmi C., Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, vol. 160, pp. 91–96.

68. Taniguchi M., Ochiai A., Kondo H., Fukuda S., Ishiyama Y., Saitoh E., Kato T., Tanaka T. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J. Biosci. Bioeng., 2016, vol. 121 (5), pp. 591–598. doi: 10.1016/j.jbiosc.2015.09.002

69. Tavano R., Sega, D., Gobbo M., Papini E. The honeybee antimicrobial peptide apidaecin differentially immunomodulates human macrophages, monocytes and dendritic cells. J. Innate Immun., 2011, vol. 3, pp. 614–622.

70. Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Curr. Trends Pept. Sci., 2005, vol. 80 (6), pp. 717–735. doi: 10.1002/bip.20286

71. Tomasinsig L., Zanetti M. The cathelicidins — structure, function and evolution. Curr. Protein Pept. Sci., 2005, vol. 6 (1), pp. 23–34.

72. Tonk M., Vilcinskas A., Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 7397–7405. doi: 10.1007/s00253-016-7718-y

73. Umasuthan N., Mothishri M.S., Thulasitha W.S., Nam B.H., Lee J. Molecular, genomic, and expressional delineation of a piscidin from rock bream (Oplegnathus fasciatus) with evidence for the potent antimicrobial activities of Of-Pis1 peptide. Fish Shellfish Immunol., 2016, vol. 48, pp. 154–168. doi: 10.1016/j.fsi.2015.11.005

74. Van Wetering S., Tjabringa S., Hiemstra P.S. Interaction between neurtophil-delided antimicrobial peptides and airway epithelial cells. J. Leuk. Biol., 2005, vol. 77, pp. 444–450. doi: 10.1.1.584.8835

75. Vernon L.P., Evett G.E., Zeikus R.D., Gray W.R. A toxic thionin from Pyrularia pubera: purification, properties, and amino acid sequence. Arch. Biochem. Biophys., 1985, vol. 238, pp. 18–29.

76. Wachinger M., Kleinschmidt A., Winder D., Pechmann N., Ludvigsen A., Neumann M., Holle R., Salmons B., Erfle V., Brack- Werner R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol., 1998, vol. 79 (Pt 4), pp. 731–771. doi: 10.1099/0022-1317-79-4-731

77. Wakabayashi H., Takase M., Tomita M. Lactoferricin derived from milk protein lactoferrin. Curr. Pharm. Des., 2003, vol. 9 (16), pp. 1277–1287. doi: 10.2174/1381612033454829

78. Wan M., van der Does A.M., Tang X., Lindbom L., Agerberth B., Haeggström J.Z. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J. Leukoc. Biol., 2014, vol. 95 (6), pp. 971–981. doi: 10.1189/jlb.0513304

79. Wang F., Qin L., Pace C.J., Wong P., Malonis R., Gao J. Solubilized gramicidin A as potential systemic antibiotics. Chembiochem., 2012, vol. 13 (1), pp. 51–55. doi: 10.1002/cbic.201100671

80. Wang Y., Chen J., Zheng X., Yang X., Ma P., Cai Y., Zhang B., Chen Y. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity. J. Pept. Sci., 2014, vol. 20 (12), pp. 945–951. doi: 10.1002/psc.2705

81. Westerhoff H.V., Zasloff M., Rosner J.L., Hendler R.W., De Waal A., Vaz Gomes A., Jongsma P.M., Riethorst A., Juretic D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur. J. Biochem., 1995, vol. 228, pp. 257–264.

82. Whitelock J.M., Murdoch A.D., Iozzo R.V., Underwood P.A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem., 1996, vol. 271 (17), pp. 10079–10086. doi:10.1074/jbc.271.17.10079

83. Xu D., Yang W., Hu Y., Luo Z., Li J., Hou Y., Liu Y., Cai K. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses. Colloids Surf B Biointerfaces, 2013, vol. 110, pp. 225–260. doi: 10.1016/j.colsurfb.2013.04.050

84. Yan L., Adams M.E. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J. Biol. Chem., 1998, vol. 273, pp. 2059–2066.

85. Yanagi S., Ashitani J., Imai K. Significance of human bdefensins in the epithelial lining fluid of patients with chronic lower respiratory tract infections. Clin. Microbiol. Infect., 2007, vol. 13, pp. 63–69.

86. Yang L., Harroun T.A., Weiss T.M., Ding L., Huang H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J., vol. 81, pp. 1475–1485.

87. Yeaman M.R., Yount N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, vol. 55, pp. 27–55.

88. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, vol. 84 (15), pp. 5449–5453. doi: 10.1073/ pnas.84.15.5449

89. Zavascki A.P., Goldani L.Z., Li J., Nation R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother., 2007, vol. 60, pp. 1206–1215. doi: 10.1093/jac/dkm357

90. Zhao H., Mattila J.P., Holopainen J.M., Kinnunen P.K. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys. J., 2001, vol. 81 (5), pp. 2979–2991. doi: 10.1016/S0006-3495(01)75938-3


Для цитирования:


Мусин Х.Г. АНТИМИКРОБНЫЕ ПЕПТИДЫ — ПОТЕНЦИАЛЬНАЯ ЗАМЕНА ТРАДИЦИОННЫМ АНТИБИОТИКАМ. Инфекция и иммунитет. 2018;8(3):295-308. https://doi.org/10.15789/2220-7619-2018-3-295-308

For citation:


Musin K.G. ANTIMICROBIAL PEPTIDES — A POTENTIAL REPLACEMENT FOR TRADITIONAL ANTIBIOTICS. Russian Journal of Infection and Immunity. 2018;8(3):295-308. (In Russ.) https://doi.org/10.15789/2220-7619-2018-3-295-308

Просмотров: 198


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)