Preview

Инфекция и иммунитет

Расширенный поиск

МикроРНК И ТУБЕРКУЛЕЗ

https://doi.org/10.15789/2220-7619-2018-3-309-315

Полный текст:

Аннотация

В 2015 г. более десятой части связанных с туберкулезом (ТБ) смертей были обусловлены Mycobacterium tuberculosis с множественной лекарственной устойчивостью (МЛУ ТБ) и широкой лекарственной устойчивостью (ШЛУ ТБ) (WHO, 2016). В сочетании с недостаточной приверженностью к режиму лечения, генетическая гетерогенность и клональность штаммов M. tuberculosis больного, а также слабая проницаемость туберкулезной гранулемы для противотуберкулезных препаратов (ПТП) способны приводить к снижению эффективности применяемой терапии, что в еще большей степени способствует распространению МЛУ и ШЛУ ТБ. Особое беспокойство вызывает факт быстрого распространения устойчивости к недавно введенным в клиническую практику ПТП второго ряда, предназначенным для лечения МЛУ ТБ — деламаниду и бедаквилину. Таким образом, распространение лекарственной устойчивости к ПТП наряду с ограниченными возможностями химиотерапии у больных МЛУ ТБ и ШЛУ ТБ настоятельно диктуют необходимость дополнения канонической химиотерапии ТБ методами лечения, направленными на хозяина. МикроРНК (miRs) представляют собой короткие последовательности одноцепочечной РНК, которые на посттранскрипционном уровне контролируют до 60% генов, кодирующих синтез белков. Накапливаются данные, указывающие на существенную роль miRs в тонкой настройке реакции организма на инфекцию, в первую очередь за счет модуляции экспрессии белков, вовлеченных в реакции врожденного и адаптивного иммунного ответа. Несмотря на то, что установленные на текущий момент проявления активности miRs локализованы внутри клеток, в ряде исследований обнаружены очень стабильные циркулирующие в крови внеклеточные miRs. В настоящее время активно изучается возможность использования этих молекул в качестве биологических маркеров. Течение ТБ характеризуется состоянием длительного хронического воспаления, в ходе которого развивающиеся параллельно или поэтапно регуляторные и провоспалительные процессы влияют на тяжесть и исход заболевания. Как про-, так и противовоспалительные воздействия служат элементами стратегии бактерий в борьбе за выживание в организме хозяина. В нашем обзоре рассматривается роль miRs в качестве маркеров туберкулезной инфекции, характера и прогноза течения заболевания, участие miRs в регуляции врожденного и адаптивного звеньев иммунного ответа на туберкулезную инфекцию, а также дана оценка перспектив клинического применения miRs для диагностики и лечения туберкулеза.

Об авторах

В. В. Еремеев
ФГБНУ Центральный научно-исследовательский институт туберкулеза.
Россия

д.м.н., зав. лабораторией клинической иммуногенетики и клеточных технологий отдела иммунологии.

107564, Россия, Москва, Яузская аллея, 2.

Тел.: 8 (499) 785-91-59 (служебн.).



В. В. Евстифеев
ФГБНУ Центральный научно-исследовательский институт туберкулеза.
Россия

к.б.н., старший научный сотрудник лаборатории клинической иммуногенетики и клеточных технологий отдела иммунологии.

Москва.


Г. С. Шепелькова
ФГБНУ Центральный научно-исследовательский институт туберкулеза.
Россия

к.б.н., старший научный сотрудник лаборатории клинической иммуногенетики и клеточных технологий отдела иммунологии.

Москва.


А. Э. Эргешова
ФГБНУ Центральный научно-исследовательский институт туберкулеза.
Россия

младший научный сотрудник отдела хирургии.

Москва.



М. А. Багиров
ФГБНУ Центральный научно-исследовательский институт туберкулеза.
Россия

д.м.н., профессор, зав. отделом хирургии.

Москва.



Список литературы

1. Barry S.E., Chan B., Ellis M., Yang Y., Plit M.L., Guan G., Wang X., Britton W.J., Saunders B.M. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J. Cell. Mol. Med., 2015, vol. 19, no. 7, pp. 1606–1613. doi: 10.1111/jcmm.12535

2. Bettencourt P., Marion S., Pires D., Santos L.F., Lastrucci C., Carmo N., Blake J., Benes V., Griffiths G., Neyrolles O., Lugo- Villarino G., Anes E. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front. Cell. Infect. Microbiol., 2013, vol. 3, 17 p. doi: 10.3389/fcimb.2013.00019

3. Bloemberg G.V., Keller P.M., Stucki D., Trauner A., Borrell S., Latshang T., Coscolla M., Rothe T., Hömke R., Ritter C., Feldmann J., Schulthess B., Gagneux S., Böttger E.C. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med., 2015, vol. 373, no. 20, pp. 1986–1988. doi: 10.1056/NEJMc1505196

4. Dorhoi A., Iannaccone M., Farinacci M., Faé K.C., Schreiber J., Moura-Alves P., Nouailles G., Mollenkopf H.J., Oberbeck- Müller D., Jörg S., Heinemann E., Hahnke K., Löwe D., Del Nonno F., Goletti D., Capparelli R., Kaufmann S.H. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Invest., 2013, vol. 123, no. 11, pp. 4836– 4848. doi: 10.1172/JCI67604

5. Eldholm V., Balloux F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol., 2016, vol. 24, no. 8, pp. 637–648. doi: 10.1016/j.tim.2016.03.007

6. Fu Y., Yi Z., Wu X., Li J., Hu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol., 2011, vol. 49, no. 12, pp. 4246–4251. doi: 10.1128/JCM.05459-11

7. Gengenbacher M., Kaufmann S.H.E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev., 2012, vol. 36, iss. 3, pp. 514–532. doi: 10.1111/j.1574-6976.2012.00331.x

8. Ghorpade D.S., Leyland R., Kurowska-Stolarska M., Patil S.A., Balaji K.N. MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol. Cell. Biol., 2012, vol. 32, no. 12, pp. 2239–2253. doi: 10.1128/MCB.06597-11

9. Harapan H., Fitra F., Ichsan I., Mulyadi M., Miotto P., Hasan N.A., Calado M., Cirillo D.M. The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb.), 2013, vol. 93, no. 6, pp. 596–605. doi: 10.1016/j.tube.2013.08.004

10. Irwin S.M., Driver E., Lyon E., Schrupp C., Ryan G., Gonzalez-Juarrero M., Basaraba R.J., Nuermberger E.L., Lenaerts A.J. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis. Model. Mech., 2015, vol. 8, no. 6, pp. 591–602. doi: 10.1242/dmm.019570

11. Kaplan G., Post F.A., Moreira A.L., Wainwright H., Kreiswirth B.N., Tanverdi M., Mathema B., Ramaswamy S.V., Walther G., Steyn L.M., Barry C.E.III, Bekker L.G. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun., 2003, vol. 71, no. 12, pp. 7099–7108. doi: 10.1128/IAI.71.12.7099-7108.2003

12. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, vol. 11, no. 9, pp. 597–610. doi: 10.1038/nrg2843

13. Kumar M., Sahu S.K., Kumar R., Subuddhi A., Maji R.K., Jana K., Gupta P., Raffetseder J., Lerm M., Ghosh Z., Van Loo G., Beyaert R., Gupta U.D., Kundu M., Basu J. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-kappa B pathway. Cell Host Microbe, 2015, vol. 17, iss. 3, pp. 345–356. doi: 10.1016/j.chom.2015.01.007

14. Lanoix J.P., Lenaerts A.J., Nuermberger E.L. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis. Model. Mech., 2015, vol. 8, iss. 6, pp. 603–610. doi: 10.1242/dmm.019513

15. Lenaerts A., Barry C.E.III., Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev., 2015, vol. 264, iss. 1, pp. 288–307. doi: 10.1111/imr.12252

16. Li S., Yue Y., Xu W., Xiong S.D. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One, 2013, vol. 8, no. 12: e81438. doi: 10.1371/journal.pone.0081438

17. Lin P.L., Ford C.B., Coleman M.T., Myers A.J., Gawande R., Ioerger T., Sacchettini J., Fortune S.M., Flynn J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med., 2014, vol. 20, no. 1, pp. 75–79. doi: 10.1038/nm.3412

18. Liu Y.H., Wang X.J., Jiang J., Cao Z.H., Yang B.F., Cheng X.X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol., 2011, vol. 48, iss. 9–10, pp. 1084–1090. doi: 10.1016/j. molimm.2011.02.001

19. Ma F., Xu S., Liu X., Zhang Q., Xu X., Liu M., Hua M., Li N., Yao H., Cao X. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat. Immunol., 2011, vol. 12, no. 9, pp. 861–869. doi: 10.1038/ni.2073

20. Maertzdorf J., Weiner J.III, Mollenkopf H.-J., TBornotTB Network, Bauer T., Prasse A., Müller-Quernheim J., Kaufmann S.H.E. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 20, pp. 7853–7858. doi: 10.1073/pnas.1121072109

21. Miotto P., Mwangoka G., Valente I.C., Norbis L., Sotgiu G., Bosu R., Ambrosi A., Codecasa L.R., Goletti D., Matteelli A., Ntinginya E.N., Aloi F., Heinrich N., Reither K., Cirillo D.M. MiRNA signatures in sera of patients with active pulmonary tuberculosis. PLoS One, 2013, vol. 8, no. 11: e80149. doi: 10.1371/journal.pone.0080149

22. Moreno-Gamez S., Hill A.L., Rosenbloom D.I., Petrov D.A., Nowak M.A., Pennings P.S. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 22, pp. E2874– E2883. doi: 10.1073/pnas.1424184112

23. Moschos S.A., Williams A.E., Perry M.M., Birrell M.A., Belvisi M.G., Lindsay M.A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007, vol. 8 (240), 12 p. doi: 10.1186/1471-2164-8-240

24. Okoye I.S., Coomes S.M., Pelly V.S., Czieso S., Papayannopoulos V., Tolmachova T., Seabra M.C., Wilson M.S. MicroRNAcontaining T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity, 2014, vol. 41, iss. 1, pp. 89–103. doi: 10.1016/j.immuni.2014.05.019

25. Rajaram M.V.S., Ni B., Morris J.D., Brooks M.N., Carlson T.K., Bakthavachalu B., Schoenberg D.R., Torrelles J.B., Schlesinger L.S. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 42, pp. 17408–17413. doi: 10.1073/ pnas.1112660108

26. Riendeau C.J., Kornfeld H. THP-1 cell apoptosis in response to mycobacterial infection. Infect. Immun., 2003, vol. 71, no. 1, pp. 254–259. doi: 10.1128/IAI.71.1.254-259.2003

27. Sahu S.K., Kumar M., Chakraborty S., Banerjee S.K., Kumar R., Gupta P., Jana K., Gupta U.D., Ghosh Z., Kundu M., Basu J. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog., 2017, vol. 13, no. 5: e1006410. doi: 10.1371/journal.ppat.1006410

28. Sato T., Liu X., Nelson A., Nakanishi M., Kanaji N., Wang X., Kim M., Li Y., Sun J., Michalski J., Patil A., Basma H., Holz O., Magnussen H., Rennard S.I. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. Am. J. Respir. Crit. Care Med., 2010, vol. 182, no. 8, pp. 1020–1029. doi: 10.1164/rccm.201001-0055OC

29. Singh Y., Kaul V., Mehra A., Chatterjee S., Tousif S., Dwivedi V.P., Suar M., Van Kaer L., Bishai W.R., Das G. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem., 2013, vol. 288, no. 7, pp. 5056–5061. doi: 10.1074/jbc.C112.439778

30. Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., Harano T., Yatabe Y., Nagino M., Nimura Y., Mitsudomi T., Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 2004, vol. 64, iss. 11, pp. 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637

31. Wagh V., Urhekar A., Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis, 2017, vol. 102, no. 1, pp. 24–30. doi: 10.1016/j.tube.2016.10.007

32. Wang J., Yang K., Zhou L., MinhaoWu, Wu.Y., Zhu M., Lai X., Chen T., Feng L., Li M., Huang C., Zhong Q., Huang X. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog., 2013, vol. 9, iss. 10:e1003697. doi: 10.1371/journal.ppat.1003697

33. Weiner J., Maertzdorf J., Kaufmann S.H. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann. NY Acad. Sci., 2013, vol. 1283, iss. 1, pp. 22–29. doi: 10.1111/j.1749-6632.2012.06802.x

34. World Health Organization. Global Tuberculosis Report 2016. URL: http://www.searo.who.int/tb/documents/global-tuberculosisreport- 2016/en (21.05.2018)

35. Wu Z., Lu H., Sheng J., Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett., 2012, vol. 586, iss. 16, pp. 2459–2467. doi: 10.1016/j.febslet.2012.06.004

36. Xu Z., Zhou A., Ni J., Zhang Q., Wang Y., Lu J., Wu W., Karakousis P.C., Lu S., Yao Y. Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis (Edinb.), 2015, vol. 95, no. 5, pp. 395–403. doi: 10.1016/j.tube.2015.02.043

37. Yi Z., Fu Y., Ji R., Li R., Guan Z. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One, 2012, vol. 7, no. 8: e43184. doi: 10.1371/journal.pone.0043184

38. Zhang X., Guo J., Fan S., Li Y., Wei L., Yang X., Jiang T., Chen Z., Wang C., Liu J., Ping Z., Xu D., Wang J., Li Z., Qiu Y., Li J.C. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One, 2013, vol. 8, iss. 12: e81076. doi: 10.1371/journal.pone.0081076

39. Zhou M., Yu G., Yang X., Zhu C., Zhang Z., Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol. Med. Rep., 2016, vol. 13, iss. 6, pp. 4620–4626. doi: 10.3892/mmr.2016.5097


Для цитирования:


Еремеев В.В., Евстифеев В.В., Шепелькова Г.С., Эргешова А.Э., Багиров М.А. МикроРНК И ТУБЕРКУЛЕЗ. Инфекция и иммунитет. 2018;8(3):309-315. https://doi.org/10.15789/2220-7619-2018-3-309-315

For citation:


Eremeev V.V., Evstifeev V.V., Shepelkova G.S., Ergeshova A.E., Bagirov M.A. MicroRNA AND TUBERCULOSIS. Russian Journal of Infection and Immunity. 2018;8(3):309-315. (In Russ.) https://doi.org/10.15789/2220-7619-2018-3-309-315

Просмотров: 133


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)