The absence of reported TBE cases in professionally-menaced groups of population testifies to the efficiency of preventive services among these contingents.


COOPERATION OF ZOOLOGICAL GROUP AND THE PCR LABORATORY FOR EVALUATION OF EPIZOOTICS IN REPUBLIC OF BASHKORTOSTAN

A.M. Syysa¹, R.R. Gazizov¹, T.A. Nigmatullina¹, A.A. Kazak¹, A.I. Kobyaakov¹, O.V. Ivanova¹, A.V. Moskvina¹
¹Center for Hygiene and Epidemiology in the Republic of Bashkortostan, Ufa, Russia

The aim of the study was to evaluate the work done to study the natural foci of tularemia in the Republic of Bashkortostan (RB).

The objectives of the study were to estimate the number of study district, the number of studies conducted, the nature of the samples studied, and the methods used.

Tularemia is a zoonoanthropososis infection, characterized by the flood-marsh type of natural foci.

From 2014 to July 2018, 242 small mammals caught in the RB were examined for tularemia, of which two were infected. The first specimen was caught in the Krasnokamsky district in 2014, the second in the Gafuriysky district in 2018. These areas adjoining the natural focal point of tularemia in the city of Agidel, where in 2013, 5 cases of tularemia were reported.

Through the territory of the RB the Belaya River and its tributaries flows, therefore, in the years of active reproduction of small mammals, the dispersal of F. tularensis carriers along this watercourse is possible. In connection with this, the number of areas studied is also growing. In 2014 — 1 district, in 2015 — 5 districts, in 2016 — 14 districts, in 2017 — 5 districts.

Every year, the volume of conducted research, the types of investigated samples increased. Since 2016, were studied samples of water from open reservoirs, since 2017 — samples blood-sucking arthropods, and since 2018 samples of hydro objects in 2014 was 45, in 2015 — 50, 2016 — 84, 2017 — 96, in 2018, 89 are planned.

Seroologic methods (microreaction of agglutination, indirect haemagglutination reaction, inhibition of indirect haemagglutination) and PCR were used. It is planned to use the ELISA.

As the result of the study there was issued the order in the FBUZ “Center for Hygiene and Epidemiology in the Republic of Bashkortostan” about the ongoing monitoring of the epizootic condition of foci of tularemia in the area of Agidel city and the Krasnokamsky district.


THE IMPACT OF GLOBAL CLIMATE CHANGE ON THE INCIDENCE OF TICK-BORNE ENCEPHALITIS IN THE EUROPEAN PART OF THE RUSSIAN ARCTIC

N.K. Tokarevich¹, A.A. Tronin², B.R. Gnativ³, R.V. Buzinov⁴, O.V. Sokolova⁴, O.V. Blinova¹
¹St. Petersburg Pasteur Institute, St. Petersburg, Russia; ²Scientific Research Center for Ecological Safety, Russian Academy of Sciences, St. Petersburg, Russia; ³Center for Hygiene and Epidemiology of Komi Republic, Syktyvkar, Russia; ⁴Directorate of Rospotrebnadzor in Arkhangelsk Region, Arkhangelsk, Russia

The study objective was to estimate the impact of air temperature change on the incidence of tick-borne encephalitis (TBE) in the Arkhangelsk Region (AR) and in the Komi Republic (RK).

We analyzed TBE incidence rate (TBEIR) in RK in 1970–2017, and in AR in 1980–2017, its dependence both on the average annual air temperature and the local air temperature during the ixodid tick activity season, and satellite data on vegetation changes within the area under study.

In RK in 1970–1979, the average number of TBE cases per year was 1.4 (TBEIR was 0.1 per 100 000), while in 2008–2017 it was 15.2 (TBEIR was 1.8 per 100 000, i.e., 18 times higher than in 1970–1979). An even sharper rise in TBEIR was registered in AR. In 1980–1989 the average number of TBE cases per year was 1.6 (TBEIR was 0.1 per 100 000), while in 2008–2017 it was 64.4 (TBEIR was 5.4 per 100 000, i.e., 54 times higher than in 1980–1989). A sharp rise in TBEIR in the Northern Europe is due both to the significant northward shift of TBE geographical distribution limits and to TBEIR significant growth in the southern districts. During the analyzed period both average annual temperature and the air temperature during the period of tick activity increased substantially. A strong correlation was revealed between the increase in the TBEIR and the rise in the air temperature. With the help of satellite technologies a pronounced growth of the vegetation index was detected.

The increase in TBEIR in the area under study was mostly due to the air temperature increment, especially during the period of tick activity. The increase in the local vegetation index bears witness to significant changes in the entire ecosystem under the influence of climate changes that provide more favorable conditions for increase in number of animal hosts of ixodid ticks, those being the main vectors of TBE virus.


PATHOGENETIC TREATMENT OF SEVERE P. FALCIPARUM MALARIA: APPROACHES TO OPTIMIZATION

A.K. Tokmalayev¹, V.B. Chentsov², D.V. Chernyshev², G.M. Kochevnikova³, N.A. Polovinkina³
¹Peoples’ Friendship University (RUDN University), Moscow, Russia; ²Infectious Clinical Hospital No. 2, Moscow, Russia

Pathogenesis of malaria is associated with massive destruction of erythrocytes infected with plasmodium and a development of pathological reactions. One of the most severe clinical forms of malaria is the cerebral form, which is registered in almost 10% of all P. falciparum malaria cases. This is also the leading cause of death. The aim of this study was to optimize the pathogenetic treatment of severe P. falciparum malaria to prevent fatal outcomes.

During the years 2007–2016 44 patients (36 men and 8 women) with severe P. falciparum malaria aged 16 to 69 years old were treated in the intensive care unit of Moscow state Clinical Hospital No. 2. The verification of the diagnosis was based on clinical, epidemiological history and the results of blood smears. The severity of malaria in patients was mainly due to late hospitalization: between 5 to 10 days from the onset of the disease. On admission, the level of blood parasites in patients was in the range from 2500 to 2 701 800 p/μl. The patients were treated in accordance with WHO recommendations (2006, 2010).

Ischemic damage of organs and hemorrhagic complications were prevented. In addition, a protocol of intensive care in patients with severe P. falciparum malaria was implemented: preventive extracorporeal hemocorrection methods were added without waiting for signs of uremia. This was carried out by a prolonged veno-venous hemodiafiltration procedure (“Prisma”), which resulted in the removal of a wide range of toxic and biologically active substances. This plasmapheresis procedure clears the plasma from fragments of dead parasites, toxic substances, and excessive amount of hemoglobin accumulated during hemolysis, thus reduces or prevents severe damage of the